Signet-ring: Authentic and Confidential Sharing of Digital Objects

Amangeet Samra, Amrita Mande, Catherine Jimerson, Diamond Rorie, Mahesh Arumugam

W233 Project Group #2

Abstract

In this paper, we investigate the authenticity
and confidentiality aspects of sharing digital
objects, especially digital photographs, in news
publications, given the recent proliferation of
fake news. We propose a system that provides:
(1) robust confidentiality to the source of
a digital object while allowing a publisher
to authenticate the object through a trusted
authority for authenticity (i.e., original and not
fabricated beyond acceptable edits), (2) verify
that the source is the owner of the object,
(3) construct and maintain a lineage of the
edits, and (4) allow a reader to verify that the
published image is authentic and the lineage
is protected.

1. Introduction

’

The rampant growth of malicious “deepfakes’
in the media has created a need for an “anti-
disinformation” solution [1]. Stories such as the
Grenfell Tower fire [2], where posts of missing or
deceased individuals were created with photos of
social media celebrities or writers who were not
actually in the vicinity of the incident, have taken
the news by storm [3]. Unfortunately, there is no
indication that incidents such as these will cease.

Deepfakes are just part of the problem. When
it comes to reporting current events, journalists
have confidential sources, but there is a constant
push by consumers/readers (henceforth referenced
as readers) who want to verify the origin of the
sources in order to protect themselves from fake
news or bad actors.

A possible solution would allow journalist-
s/publishers to verify the origin of the digital
objects their sources provide and allow sources to
verify that their digital objects are shared with the
intended journalist/publisher. This solution should
implement a system with no agenda other than
verifying the source of an object and maintaining
an object’s lineage. It would be uninterested
in the content it verifies and tracks, providing
some privacy to the sources who post within it.
Furthermore, the system cannot prioritize one
object over any other. Instead, it should allow

sources and publishers to determine what is
worth sharing while still tracking every change
to the original object, thus making the ideal
system unbiased. Furthermore, if a vendor, such
as a phone manufacturer, were to design and
implement such a system, they may be motivated
by proprietary requirements and company interests
than the universality of use and user privacy. For
example, a Google app would be interested in
collecting user data and biased towards some
content, sources, or publishers.

Currently, an unbiased and uninterested system
does not exist. To address this concern, we
propose Signet-ring.!» 2. Signet-ring allows the
sources and the publishers to verify each other. It
also provides a mechanism that protects owner-
anonymity when a reader verifies a published
object. Furthermore, it takes the burden of ver-
ification off the readers. Instead, news outlets
must provide information/digital objects that are
verifiable.

Signet-ring provides robust confidentiality to
the source of a digital object while still allowing
a publisher to authenticate the source and the
object through a trusted entity for authenticity. The
protection applies to the digital objects created in a
device connected to Signet-ring and the edits (e.g.,
adjusting lighting) made to that digital object. It
verifies that the source is the owner of the object.
Additionally, it allows a reader to verify that the
published digital object is authentic and that its
lineage is protected.

II. Background Survey

In our efforts to provide a means to verify infor-
mation/images and ultimately tackle the deepfake
problem that persists today, we present two use
cases: the case for source confidentiality and the
case for authenticity.

lsigner .d: “a seal used officially to give personal
authority to a document in lieu of signature” [4]

Zsignet ring .d: “a finger ring engraved with a signet,
seal, or monogram” [5]

A. The Case for Confidentiality

News and media outlets excessively use “anony-
mous sources” to protect the confidentiality of
outside party involvement in reports. However,
contrary to popular belief, best journalistic prac-
tices and ethics state that source anonymity should
only be used when necessary. These ethics deemed
the identification of sources to provide the readers
a way to gauge the source’s credibility and the
information [6]. Furthermore, those publications
that inordinately cited “anonymous sources” were
seen as lazy and undermined the legitimacy of
such information gathering as a tool.

With the nearly limitless capabilities of the
worldwide web, achieving source anonymity is
almost impossible. The maturation and continued
technological advancement consistently present
the possibility that an individual’s life could
be (and has been) significantly and negatively
impacted by perceived slights or affiliations with
specific groups [7]). In this technological age,
confidentiality and privacy have never been more
prized, yet so easily subverted [7, 8]. Frameworks
exist that provide sharing pathways where the
pathways do not identify the users [9, 10]. Tangen-
tially, we sought to create a system that provides
confidentiality to the source (if desired or needed)
while allowing the reporter or any other third party
to authenticate the originality and volume of edits
done to the piece of media (the primary use case
being digital photographs).

B. The Case for Authenticity

The proliferation of “deepfakes” in the media
has created a need for any third party to take a
piece of media and use it to check the provenance
thoroughly [1]. Specifically, in [1], a decentralized
blockchain adds an object to its ledger after
determining the hash of the discriminative features
of the object (calculated using multiple LSTMs
[11]). This encoding of digital objects into dis-
criminative features is similar to ARCHANGEL
[12], a decentralized blockchain-based system for
guaranteeing the integrity of archives of digital
objects. However, these approaches are specific to
particular digital objects (e.g., video frames) and
do not provide a mechanism for authenticating
the users sharing a digital object.

Provenance and edit checking is available to
experts in their related fields [13], but it may be
unusable or impractical for journalists or, say, art
experts who want to know that they are buying

authentic digital art [14]. In addition, other mech-
anisms (including blockchain, e.g., [15]) address
fake news using a verification framework that
involves all the actors (the source, the publisher,
and the reader). This work builds on the theoretical
framework for building trust and curbing fake
news [16, 17, 18]. More specifically, [15] proposes
a blockchain-based framework that (1) allows pub-
lishers to distinguish between authentic sources
and fake sources, (2) adopts a smart-contract
[19] to publish news articles, and (3) ensures
the integrity of published articles through the
use of semantic similarity search (e.g., [20, 21]).
Verification of a news article can be determined
by searching the news stored in a Merkle tree
[22].

III. Method

In this section, we present the architecture of
Signet-ring, discuss the components involved in
the system, and the various users (i.e., actors)
interacting with the system. We also present
the authentication workflow that allows a user
to publish an object with a publisher and the
verification workflow that allows a user to verify
the authenticity of a published object.

A. Architecture

Signet-ring provides authentication and verifica-
tion of digital objects created by a user (i.e.,
owner) using a trusted entity called Trusted
Authority (TA). Any application that can create
an object also registers and authenticates with TA
(for example, a mobile camera app). Owners and
publishers register and authenticate themselves
with the TA. A reader can retrieve published
objects from the publisher’s portal, and may
request TA to verify any published objects. Figure
1 shows the architecture of Signet-ring.

While this architecture is similar to [15], we
note that Signet-ring provides a mechanism for
ensuring that any content-generation application
can be made authentic and integrated with the
proposed framework. And, Signet-ring simplifies
the mutual authentication of an owner and a
publisher (without a blockchain).

1) Components of Signet-ring

The main components of Signet-ring are (1)
Trusted Authority and (2) Authenticated App.

o Trusted Authority (TA). TA is similar to a
Certificate Authority that issues and manages

Trusted

Authority (TA)

T

Create a
Digital Object (

Q)

e

Request for

% Owner

Publication

Q *
Authenticating Publisher W) J. ?

@—%’{GZ e

2

|I| .I)

Verify the
Authenticity of a
. Digital Object
Verification & Authentication of Owner
Publication of an object
‘ Reader ‘
- Fetches Digital
Objects from an
Article

Article

Authenticated
Entity

Encrypted
Data

8

« | Digital
Object

@ Certificate

Challenge
Exchange

(|l
ﬁ Protocol p\s

1\ Verification
'/ Result

Figure 1: Architecture of Signet-ring

digital certificates to certify the ownership of
public-key of named entities (e.g., website).
Likewise, TA is responsible for issuing and
certifying public-private keys to registered
entities. TA is also responsible for issuing
certificates to digital objects created by an
owner using an authenticated app. Further-
more, TA maintains the lineage of edits to
a digital object. TA allows the publisher
and owner to mutually authenticate each
other before publishing the owner’s digital
object. This process does not require any
entity to share any confidential information
explicitly. Finally, TA verifies the certificate
of a published object.

e Authenticated App. Authenticated App
creates a digital object on request from an
owner. When the owner requests (e.g., clicks)
the app to create an object, app submits
the created object to the TA along with the
credentials of the app and the owner for
certification.

2) Actors of Signet-ring

The main actors of Signet-ring are owner, pub-
lisher, and reader.

e Owner. Owner is an authenticated user of
TA and is responsible for the creation (or
edits) of a digital object and publishing the
digital object with a publisher.

o Publisher. Publisher is an authenticated
user of TA and is responsible for publishing

a digital object in its portal. In addition, the
publisher makes the certificate available for
all published images in the portal.

e Reader. Reader can verify the published
object’s authenticity and lineage with the TA.

B. Workflows

In this section, we discuss the primary workflows
of Signet-ring.

1) Creating a Digital Object

Figure 2 shows the creation workflow. Owner
requests authenticated app to create a new digital
object (or save the edits performed on an existing
digital object). App then sends a certificate request
to TA with the name of the object, its payload (i.e.,
contents), and the identity of the owner. If the
object has lineage (i.e., the object is edited from
an existing object), the app includes the identity of
the parent object and the certificate of the parent
object in the request. TA verifies authentication
of the app and the owner. Subsequently, if the
lineage is part of the message, TA verifies the
certificate of the parent object. Finally, TA issues
a certificate for the object.

2) Publishing a Digital Object

To publish a digital object, owner and publisher
execute a challenge protocol modeled based on

Owner Authenticated App TA
»| Create / edit
Click / Save 7 an object
Request Certificate
obj_name,
obj_payload,
Obj-idparent:
public-key of
owner of parent,
ta-cerparent
Werify public-key of owner of parent object
WVerify parent object and parent ta-cert
\ICreate obj-id and issue a cerfificate for the
lobject
»
" obj-id, ta-cert
A obj-id, ta-cert r ¥

Figure 2: Creation of a digital object

the Diffie-Hellman Key Exchange Protocol [23].°
The protocol ensures mutual authentication of the
owner and publisher before the publication of the
digital object.

Step 1: Challenge Creation: An owner initi-
ates a challenge with the TA when they decide to
share an object. The challenge includes a random
secret (challenge-textl) that is encrypted with the
publisher’s public key. TA returns an ID for the
challenge as shown in Figure 3.

Owner TA

—>
Fublish

h 4

ChallengeRequest:

ge-text1, public-key,)

object_id,

"
o«

challenge_id

Figure 3: Challenge creation

Step 2: Challenge Exchange: As shown
in Figure 4, owner sends the challenge ID to
the publisher. Publisher retrieves the challenge
from the TA and decrypts the secret using the
publisher’s private key. Then, it creates a new
random secret (challenge-text2) and appends it
to the decrypted secret. Subsequently, it encrypts
the combined secret with the owner’s public key.

3We would like to note that there are many different im-
plementations possible for the challenge protocol, including
the implementation where the owner and publisher do not
communicate directly. In our design, we let the owner and
the publisher securely communicate while participating in
the challenge protocol to authenticate each other mutually.

Publisher updates the combined secret at the TA
and replies to the owner with an opaque value
that the owner should return to the publisher for
verification. This opaque value contains the value
of the publisher’s secret that is encrypted using
the publisher’s public key. (As a result, only the
publisher can decrypt this value.)

Owner TA

VerifyChallenge:

challenge_id »
Fetch Challenge
challenge-text1= Decrypt(, private-key]
Encryptichallenge-texi1+challenge_texi2, public-key, e,
-
ChallengeUpdate:
object_id, secrat
£
challange] id,

opague-value=Encrypt(challenge-text1+challenge-taxt2,
public-keypypisher!

r v v

Figure 4: Challenge exchange

Step 3: Challenge Verification: In the final
step (cf. Figure 5), owner decrypts the secret
in the challenge using its private key. Owner
authenticates publisher if it sees challenge-textl
in the message. When owner decrypts the secret,
it also gets the text that publisher added in Step
2. To complete the authentication process, owner
sends a message to the publisher that it accepted
the challenge along with both the secrets and
publisher’s opaque value. Publisher decrypts the
opaque value and retrieves the original secrets.
If the secrets match the texts in the message,
publisher authenticates owner.

Owner TA

" »
o >

Fetch Challenge

challenge-text1, challenge-text2 = Decrypt{secret,
private-keygunar)

Verify challenge-text1 to authenticate publisher

ChallengeAccept:
challenga-text1. challenge-text2, opaque-value
<

Fetch Challenge

challenge-texti, challenge-text2 =
Decry lue, private-keypiisher)

Verify chall text1, chall taxt2 to authenticate owner

Publigh:
objid, user-id, publisher-id

Publish Response: ta-cert

Publish Response: ta-pert
L2

Figure 5: Challenge verification

On successful authentication, publisher requests
the TA to publish the object. The TA validates
provided information for publication and issues
a signed certificate along with the owner’s and
publisher’s public keys. Finally, the publisher
publishes the certified object in its portal.

3) Verification of a Published Object

A random reader of the publisher’s portal can
request verification of the digital objects published
in the portal with the TA. Figure 6 outlines
the verification process. First, TA validates the
digital signature of the certificate. Subsequently,
TA verifies that the public keys of the owner
and publisher match. Finally, if the object has a
lineage, TA ensures the lineage is authentic and
returns the validation result to the reader. Thus,
Signet-ring lets a reader authenticate and verify
the published objects without disclosing the owner
and any attributes associated with the owner.

Reader Publisher TA

-
>

Fetch Published
Article

Fetch cert fora
document in the
published artcila

Verification Request:
obj-name, obj-kind, Find relevant objects
public-KeYgwnar. Fetch owner details

public-keYpubgshar: Fatch publisher details

ta-cert Fetch digital object details

=

Verify public-h and public-key,,
Verify parent object and parent ta-cert

Decrypt ta-cert and verify the authenticity of the
certficate

I

Verification Response

b b b

Figure 6: Verification of a published object

IV. Results

In this section, we discuss a proof-of-concept
implementation of Signet-ring and our findings.

A. Implementation

We implemented a proof-of-concept (POC) system
of Signet-ring.* We modeled the various com-
ponents and actors of Signet-ring using Python
FastAPI [24] web services that expose HTTP
REST [25] endpoints and use a PostgreSQL as
the backend database.

“The implementation of this architecture is available at
https://github.com/aumahesh-mids/signetring.

1) Trusted Authority Application’

We implemented TA as a Python FastAPI web
server that exposes the following REST APIs.

e apps: Register a new app and get a list of
registered apps.

o user: Register a new user and get a list of
registered users.

e objects: Request a certificate for a new object,
find the lineage of an object, and publish a
certified digital object.

o publication: Implement the challenge proto-
col discussed in Section III-B2.

e verification: Verify the certificate of a pub-
lished object.

Note that we have implemented additional APIs

that are not listed above (for brevity).

2) User®

The user application exposes endpoints to initial-
ize an owner or a publisher and register with the
TA. For an owner, the user application exposes
REST endpoints that: (1) create a new digital
object (by forwarding the request to the source
app) and (2) initiate the challenge protocol for
publication of the object. For a publisher, it
exposes a REST endpoint to trigger a challenge
for the publication of an object.

3) Source App’

We implemented the source app as a server that
exposes a REST endpoint to initialize the app
(type of the application) and register it with the
TA. When the owner submits a request to create
a new object, the user app invokes a REST API
on the source app that triggers the creation and
submission of the object to the TA.

B. Findings

We measured success based on the following
criteria: (1) verification of published objects,
(2) maintenance of accurate lineages for each
digital object, and (3) robustness against imitation
attacks.

We know that some users will try to subvert
the system, for example, by taking pictures of
pictures or trying to represent other users. The

>0OpenAPI specification for TA is available at: https://app.
swaggerhub.com/apis/ AUMAHESHMIDS/signet-ta/0.1.0

80penAPI specification for user application is available
at: https://app.swaggerhub.com/apis/ AUMAHESHMIDS/
user/0.1.0

"OpenAPI specification for source app applica-
tion is available at: https://app.swaggerhub.com/apis/
AUMAHESHMIDS/app/0.1.0

https://github.com/aumahesh-mids/signetring
https://app.swaggerhub.com/apis/AUMAHESHMIDS/signet-ta/0.1.0
https://app.swaggerhub.com/apis/AUMAHESHMIDS/signet-ta/0.1.0
https://app.swaggerhub.com/apis/AUMAHESHMIDS/user/0.1.0
https://app.swaggerhub.com/apis/AUMAHESHMIDS/user/0.1.0
https://app.swaggerhub.com/apis/AUMAHESHMIDS/app/0.1.0
https://app.swaggerhub.com/apis/AUMAHESHMIDS/app/0.1.0

challenge protocol protects against the imitation
of users and publishers.

Signet-ring certifies the authenticity of digital
objects upon creation (e.g., clicking a photograph).
Those certifications are viewable by the publisher,
the owner, and any reader. Signet-ring also tracks
all edits made by both the owner and any other
users in our system, which is essential in providing
another layer of authenticity as a reader can track
the edited object back to the original. Note that a
reader cannot track the published object back to
its owner.

A challenge protocol that allows mutual verifi-
cation of owners and publishers was added to
the scope of the work to deal with imitation
attacks. We believe our design and the POC
implementation met the goals. We discuss several
improvements and enhancements to our design
(and our implementation) in the next section.

V. Discussion

A. Staged Objects

Signet-ring ensures that when the owner creates an
object through an app, the app submits the object
to the TA and requests a certificate. The action
of the creation of an object is the trigger for the
request for a certificate. However, the architecture
does not control the environment at the time
of the creation of the object. As an example,
consider the process of clicking a photograph
using a camera app. When the user clicks, the
app shoots the image and submits it to the TA for
a certificate. However, the environment/context
where the image was shot is beyond the purview
of Signet-ring. Signet-ring only guarantees that
an object submitted to TA and published by a
publisher is authentic, i.e., it is certified at the
time of the creation of the object.

B. Trustworthiness of Applications

Staged objects raised the question about how to
deal with applications or owners that are not
trustworthy. Consider the following scenario. A
third-party authenticated photo editing software
submits an edited version of an already certified
digital object without providing lineage. To deal
with this problem, we propose using semantic
similarity hashing (SSHash) [20, 21], similar to
architecture proposed in [15]. Specifically, the TA
runs a semantic similarity search across the objects
it has already certified. In the case where an
existing certified object has a significant similarity

match (above some predefined threshold) with the
submitted object, TA flags the object as a violation
and does not issue a certificate.

C. Verification of Real Identities

When the TA registers a user, it has to ensure that
the user is whom they claim to be. For example,
consider a user who registers with the TA as CNN
or Fox News. TA should not accept the request for
registration without proper verification. Verifying
the real identity is beyond the scope of this work
and is usually a manual or a semi-automated
process through verification vendors. Moreover,
this verification of real identity is similar to
verifying subject names by a certificate authority
when a subject requests a digital certificate [26].
Also, this is similar to how various social media
platforms verify users’ identities and add a verified
icon to their profiles (e.g., Twitter Blue [27]).
Therefore, TA has to verify a user’s real identity
before accepting their registration request.

D. Anonymity in Challenge Protocol

As mentioned in Section III-B2, the challenge
protocol can be implemented in many different
ways. In our implementation, for quick prototyp-
ing and demonstration of our approach, we let the
owner communicate with the publisher directly
during the challenge exchange protocol. Instead,
we can implement the challenge protocol such
that the owner submits the challenge request for
the TA to manage. Specifically, the owner initiates
the challenge, and the TA executes the challenge
by forwarding the challenge to the requested
publisher. The owner and the publisher do not
communicate directly and do not know the other
party’s public key. Instead, TA manages the whole
protocol and sends only the result to the respective
parties. Thus, it is possible to publish a digital
object anonymously.

E. Anonymity Everywhere

In the current design, the owner of a digital object
has to authenticate with the TA to get a certificate
and publish the object. One obvious question
is whether it is possible to protect the identity
of the owner from the TA itself. One approach
is to create virtual entities every time a digital
object is created. The virtual entities include a
virtual app and a virtual user, with no traceability
to the original app and the owner. Nevertheless,
registration and verification of such virtual entities

is an open question. Current architecture requires
the TA to verify and authenticate the app and the
owner. We do not yet know if the anonymous
creation and publication of digital objects are
possible. And this question is beyond the scope
of this work.

F. Inference Threats

All communication in Signet-ring is encrypted
with appropriate keys negotiated as part of the
TLS exchange [28]. However, inference threats
on encrypted traffic are still possible (as studied
in [29, 30]). As a result, it is possible to make
some inferences based on the communication
between the various components and users of
Signet-ring. To minimize such attacks, we propose
to extend Signet-ring to implement the anonymity-
preserving challenge protocol for publishing a dig-
ital object, as discussed in Section V-D. However,
a third party can still make inferences by just
observing communication patterns between the
owner and the TA, or the TA and the publisher. For
example, an attacker could correlate the sequence
of communication to infer that a particular owner
is trying to publish an object with a particular
publisher. To address this issue, TA will bulk
challenge messages for a publisher and dispatch
them at a fixed time of the day, minimizing the
correlation. In addition, we note that a given user,
app, and TA communicate for various reasons
(authentication, creation, verification, publication)
over a channel created using a negotiated sym-
metric key between the respective parties. Thus,
the possibility of any kind of inference is very
low.

G. Signet-ring in Production

The POC implementation discussed in Section IV
is very limited. To bring Signet-ring to production,
we have the following options:
e End-to-end ecosystem. We design and de-
velop all components of the architecture.
We would invest in the development of
various content-creation applications such as
camera and word processor. However, there
are existing applications such as the native
mobile camera app with huge adoption. As
a result, getting consumers to adopt native
Signet-ring content-generation applications
will be the main challenge.
e Connectors. We design connectors for ex-
isting third-party content-generation appli-

cations. Connectors allow Signet-ring to
provide an unbiased and uninterested privacy-
centric framework for such applications. Fur-
thermore, to increase awareness of consumers
to use applications that have connectors for
Signet-ring, we plan to work with popular
App Stores (e.g., Apple App Store, Google
Play Store) to add a seal of approval (e.g.,
Verified by Signet-ring) to such applications.

VI. Conclusion

In this paper, we presented Signet-ring, an unbi-
ased and uninterested system for sharing digital
objects that ensures authenticity and preserves the
confidentiality of the sources. We implemented a
proof-of-concept (POC) system and showed how
a challenge protocol (like the Diffie-Hellman Key
Exchange [23]) could provide mutual authentica-
tion for owners and publishers. Our POC certified
digital objects upon creation and preserved their
lineage. While there are circumstances outside
the scope of Signet-ring that allow fake objects
to be created, Signet-ring provides the framework
for authentic and confidential sharing of digital
objects. We discussed several open problems and
opportunities for enhancements in Section V.
Bringing Signet-ring to production by integrating
with third-party applications using connectors is
the essential first step towards our goal.

References

[1] Christopher Chun Ki Chan, Vimal Kumar, Steven Delaney,
and Munkhjargal Gochoo. Combating deepfakes: Multi-
Istm and blockchain as proof of authenticity for digital
media. In 2020 IEEE/ITU International Conference on
Artificial Intelligence for Good (AI4G), pages 55-62.
IEEE, 2020.

[2] Wikipedia contributors. Grenfell tower fire — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.
php?title=Grenfell_Tower_fire&oldid=1125574144, 2022.
[Online; accessed 8-December-2022].

[3] Bharati Bharali and Anupa Lahkar. Fake news: Credibility,
cultivation syndrome and the new age media. Media
Watch, 9, 03 2018.

[4] Merriam-Webster. Signet. https://www.merriam-webster.
com/dictionary/signet. [Online; accessed 30-November-
2022].

[5S] Merriam-Webster. Signet ring. https://www.
merriam-webster.com/dictionary/signet%20ring. [Online;
accessed 30-November-2022].

[6] K. Tim Wulfemeyer. Use of anonymous sources in
journalism. Newspaper Research Journal, 4(2):43-50,
1983.

[7] Svana Calabro. From the message board to the front
door: Addressing the offline consequences of race-and

https://en.wikipedia.org/w/index.php?title=Grenfell_Tower_fire&oldid=1125574144
https://en.wikipedia.org/w/index.php?title=Grenfell_Tower_fire&oldid=1125574144
https://www.merriam-webster.com/dictionary/signet
https://www.merriam-webster.com/dictionary/signet
https://www.merriam-webster.com/dictionary/signet%20ring
https://www.merriam-webster.com/dictionary/signet%20ring

gender-based doxxing and swatting. Suffolk UL Rev.,
51:55, 2018.

[8] Laura Durity. Shielding journalist-"bloggers”: The need
to protect newsgathering despite the distribution medium.
Duke L. & Tech. Rev., 5:1, 2005.

[9] Stefan Contiu, Sébastien Vaucher, Rafael Pires, Marcelo
Pasin, Pascal Felber, and Laurent Réveillere. Anonymous
and confidential file sharing over untrusted clouds. In
2019 38th Symposium on Reliable Distributed Systems
(SRDS), pages 21-2110, 2019.

[10] Danan Thilakanathan, Rafael Calvo, Shiping Chen, and
Surya Nepal. Secure and controlled sharing of data in
distributed computing. In 2013 IEEE 16th International
Conference on Computational Science and Engineering,
pages 825-832, 2013.

[11] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-
term memory. Neural computation, 9:1735-80, 12 1997.

[12] Tu Bui, Daniel Cooper, John P. Collomosse, Mark Bell,
Alex Green, John Sheridan, Jez Higgins, Arindra Das,
Jared Keller, Olivier Thereaux, and Alan W. Brown.
Archangel: Tamper-proofing video archives using temporal
content hashes on the blockchain. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 2793-2801, 2019.

[13] Alan J Cooper. Detecting butt-spliced edits in forensic
digital audio recordings. In Audio Engineering Soci-
ety Conference: 39th International Conference: Audio
Forensics: Practices and Challenges. Audio Engineering
Society, 2010.

[14] Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. Non-
fungible token (nft): Overview, evaluation, opportunities
and challenges. arXiv preprint arXiv:2105.07447, 2021.

[15] Adnan Qayyum, Junaid Qadir, Muhammad Umar Janjua,
and Falak Sher. Using blockchain to rein in the new
post-truth world and check the spread of fake news. IT
Professional, 21(4):16-24, 2019.

[16] S. Huckle and M. White. Fake news: A technologi-
cal approach to proving the origins of content, using
blockchains. Big Data, 5(4):356-371, 2017.

[17] Wengian Shang, Mengyu Liu, Weiguo Lin, and Minzheng
Jia. Tracing the source of news based on blockchain. 2018
IEEE/ACIS 17th International Conference on Computer
and Information Science (ICIS), pages 377-381, 2018.

[18] Tee Wee Jing and Raja Kumar Murugesan. A theoretical
framework to build trust and prevent fake news in social
media using blockchain. In Faisal Saeed, Nadhmi Gazem,
Fathey Mohammed, and Abdelsalam Busalim, editors,
Recent Trends in Data Science and Soft Computing, pages
955-962, Cham, 2019. Springer International Publishing.

[19] Alexander Savelyev. Contract Law 2.0: Smart Contracts
As the Beginning of the End of Classic Contract Law.
Higher School of Economics Research Paper, (WP BRP
71/LAW/2016), 2016.

[20] Giulio Ermanno Pibiri. Sparse and skew hashing of
K-mers. Bioinformatics, 38(Supplement_1):1185-1194, 06
2022.

[21] Jiaming Xu, Pengcheng Liu, Gaowei Wu, Zhengya Sun,
Bo Xu, and Hongwei Hao. A fast matching method based
on semantic similarity for short texts. In Guodong Zhou,
Juanzi Li, Dongyan Zhao, and Yansong Feng, editors,
Natural Language Processing and Chinese Computing,
pages 299-309, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[22] R. C. merkle. A digital signature based on conventional
encryption function. Advances in Cryptology (CRYPTO
’87), 293:369-378, 1988.

[23] W. Diffie and M. Hellman. New directions in cryp-
tography. [EEE Transactions on Information Theory,
22(6):644-654, 1976.

[24] FastAPI. https:/fastapi.tiangolo.com/.

[25] Leonard Richardson and Sam Ruby. RESTful Web
Services. O’Reilly Media, Inc., 2007.

[26] Medha Mehta. Understanding the SSL Valida-
tion Process with FAQs. https://sectigostore.com/blog/
understanding-the-ssl-validation-process-with-fags/. [On-
line; accessed 8-December-2022].

[27] Twitter. Legacy verification policy.
//help.twitter.com/en/managing-your-account/
legacy-verification-policy. [Online; accessed 8-
December-2022].

[28] T. Dierks and E. Rescorla. The transport layer security
(tls) protocol version 1.2. RFC 5246, RFC Editor, August
2008. http://www.rfc-editor.org/rfc/rfc5246.txt.

[29] Charles V. Wright, Lucas Ballard, Fabian Monrose,
and Gerald M. Masson. Language identification of
encrypted voip traffic: Alejandra y roberto or alice and
bob? In Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, SS’07, USA, 2007.
USENIX Association.

[30] Brad Miller, Ling Huang, A. D. Joseph, and J. D.
Tygar. 1 know why you went to the clinic: Risks
and realization of https traffic analysis. In Emiliano
De Cristofaro and Steven J. Murdoch, editors, Privacy
Enhancing Technologies, pages 143—-163, Cham, 2014.
Springer International Publishing.

https:

Contributions of the Team

Amangeet Samra: She helped code the FastAPI
implementation of user (with Catherine) and source app
applications. She wrote Section V section of the paper
(with Mahesh). She put-together the slide-deck for the
project presentation. She edited the final paper for grammar,
correctness and style.

Amrita Mande: She worked on the writeup for
Section III (with Mahesh). She contributed to the overall
architecture of Signet-ring and the high-level design of
the proof-of-concept implementation. She identified various
scenarios to break/attack the system.

Catherine Jimerson: She helped code the FastAPI
implementation of user application (with Geet). She worked
on the writeup for Sections I (with Diamond) and IV. She
contributed to the animation of the slide-deck and fine-tuned
the intuitive explanation of the methods.

Diamond Rorie: She did the research/reading for
literature review. She worked on the introduction (Section I)
with Catherine and literature survey (Section II) of the paper.
She helped finalize the slide-deck.

Mahesh Arumugam: He worked on proof-of-
concept implementation of Signet-ring. He designed the POC
system and developed the story for the demo. Mahesh coded
the FastAPI implementation of TA. In addition, He helped
write Section III (with Amrita) and Section V (with Geet).
And, he helped typeset the paper in LaTeX.

https://fastapi.tiangolo.com/
https://sectigostore.com/blog/understanding-the-ssl-validation-process-with-faqs/
https://sectigostore.com/blog/understanding-the-ssl-validation-process-with-faqs/
https://help.twitter.com/en/managing-your-account/legacy-verification-policy
https://help.twitter.com/en/managing-your-account/legacy-verification-policy
https://help.twitter.com/en/managing-your-account/legacy-verification-policy
http://www.rfc-editor.org/rfc/rfc5246.txt

