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Abstract

We focus on authentication of bulk data dissemination in sen-
sor networks using symmetric keys. By bulk data, we mean
that the data is large enough that sufficient RAM memory can-
not be allocated to store the data (due to limited memory as
well as memory requirements from other parts of the code in
the sensor). Hence, the data must be stored in EEPROM. Due
to cost of write to EEPROM, this data must be verified before
storage.

We consider three scenarios: multihop coarse-grained
pipelining, multihop fine-grained pipelining, and single hop.
In the second and third scenarios, we show that the time to
transmit 3-4 KB of data is less than (or, close to) sending even
a single packet using public keys. For the first scenario, we
argue that the use of symmetric keys would marginally im-
prove the performance. For this scenario, we also propose
additional techniques to reduce the cost of secure data dis-
semination by more than 70%.

Keywords: Sensor networks, Data dissemination, Au-
thentication, Symmetric keys

1 Introduction

In this paper, we focus on the problem of securing the trans-
mission of bulk data in a sensor network. This problem is
crucial in the context of sensor networks where the amount
of available RAM is significantly small (e.g., Mica2 sen-
sors [4] have only 4KB RAM). Therefore, if large amount of
data needs to be sent to the sensor nodes then this data must
be stored on the EEPROM (i.e., external flash of sensors),
which is much larger in size. One of the important problems
with this however is that EEPROM writes are expensive in
terms of energy (e.g., writing a 16-byte block to an EEPROM
is approximately four times more expensive than transmit-
ting a message or it is equivalent to execution of more than
2,300,000 instructions [28, 32]). Moreover, each EEPROM
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location can be successfully written only a finite number of
times (typically about 10,000 operations [6]). In other words,
after a certain number of writes, the EEPROM location can-
not be changed subsequently. Thus, an adversary can launch
a denial of service (DOS) attack by sending garbage data to
a sensor. Even if the sensor later finds out that the data is in-
valid, it would have had spent significant energy in saving the
data to EEPROM. This suggests that data must be authenti-
cated before it is written to EEPROM. We define this problem
as the problem of bulk data dissemination.

We consider the problem of bulk data dissemination in three
scenarios. In one extreme, bulk data dissemination needs
to be solved for reprogramming a sensor network where the
base station sends the new program to the sensors. This pro-
gram size is typically tens of kilobytes in typical applica-
tions. In the second scenario, the data is moderate in size.
Such a scenario may occur if the base station is collecting
statistics about the network performance. The base station
may then send a summary of such data along with new com-
mands, reconfigured values of different parameters, code for
revised functionality, etc., to all the sensors in the network.
It is expected that the size of such data would typically be
smaller (1-4 KB) compared to the case of reprogramming
where the old program is completely replaced by the new
program. However, it can still be large enough that storing
it entirely in memory may not be feasible, especially due to
the fact that typical applications use static memory allocation
for main memory. The third scenario occurs in cases where
the network is divided into a collection of (possibly overlap-
ping) clusters. In such a scenario, the cluster leader would
need to communicate data to all sensors in its network. This
scenario differs from the second scenario in that the commu-
nication within the cluster is expected to be single hop in the
third scenario whereas the communication is expected to be
multihop in the second scenario. A variation of the third sce-
nario also occurs when reprogramming needs to be done in a
laboratory environment where all sensors are close to the base
station (i.e., within distance 1). Even in such a scenario, se-
curity is needed to ensure that two users trying to reprogram
their respective sensors do not (accidentally or otherwise) in-
terfere with each other. The goal of our work is to develop
a mechanism that will allow sensors to authenticate the data
they receive before they store it to the EEPROM.

Scheme for authenticating a data stream. One way to au-
thenticate such data is to use the approach from [9] for sign-
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ing digital streams (as done in [8]). In this approach, the
data is divided into a collection of packets, say x1, x2, ...xn.
Subsequently, hash of xn is computed and attached to xn−1.
Then, hash is computed on this modified packet (i.e., packet
xn−1 and hash of xn) and attached to xn−2. This process is
then repeated until we obtain x1 and the hash of the modified
x2 (that contains x2 and hash of modified x3). Finally, the
hash of the modified first packet is then signed. (We call this
approach the basic hash chain scheme.) With this approach,
when a node receives the first packet, it can use the signature
to authenticate it. Additionally, it obtains the hash value for
the (modified) second packet. Thus, when it receives the sec-
ond packet, it can use the hash value to verify it, and so on.
In this approach, the important issue is the approach used for
signing the hash of the first packet. If the cost of this sig-
nature is reduced then it would assist in reducing the overall
cost. The cost of the signature is especially important in the
second and third scenarios in the previous paragraph, where
the size of the data is comparatively smaller. Note that with
this approach, if any packet is lost then a node cannot verify
subsequent packets. Hence, in the context of our problem,
such packets cannot be stored in EEPROM. This problem
can be remedied if all the hash values are sent in advance (as
done in [7]) or by signing intermediate packets in the packet
stream; these signatures would allow a node to authenticate
(and store to EEPROM) packets received after the signature.

Existing approaches [7,8,19] use public keys for authenticat-
ing the data used in reprogramming. The base station signs
the hash of the first packet using its private key and each sen-
sor decrypts it using the corresponding public key. However,
creating and verifying the asymmetric digital signatures have
very high computation overhead. Moreover, since the crypto-
graphic operations are overlapped with the radio operations;
if the encryption/decryption operations are not fast enough,
we may encounter problems if the radio packets needed by
the sensors are no longer available. Although recent work
has shown that RSA and elliptic curve cryptography (ECC)
are feasible on Mica/TelosB motes [11, 23, 33], they should
still be avoided or used sparingly.

With this motivation, we focus on use of symmetric keys.
For example, if we use Skipjack (or RC5) on Mica2 motes,
the execution time for encryting/decrypting an 8-byte block
is only 0.38ms (or 0.26ms in the case of RC5), which is less
than the time for sending one byte data over radio [13]. This
approach also has the potential to allow intermediate pack-
ets to be signed so that even if a sensor misses some packet,
it can authenticate and store packets received after the sub-
sequent signature. Inserting such intermediate signatures is
feasible since the cost of computing these signatures is small.
A simple approach is to use a single network-wide key shared
by the base station and all the sensors [13]. The problem
with this approach is that a sensor cannot verify if the data
received is from the base station or another sensor in the net-
work. Therefore, we must use symmetric keys in such a way
that the nodes can verify that the data was indeed sent by the
base station.

Contributions of the paper.

• We propose a symmetric key based protocol that authen-

ticates the bulk data dissemination process in sensor net-
works. The algorithm requires only O(log n) keys to be
maintained at each sensor. Thus, in our protocol, only a
very small number of keys are maintained at every sen-
sor.

• We illustrate the applicability of our approach in the
three scenarios considered above. Regarding the first
scenario, we focus on the reprogramming protocol MNP
[18] and show that security can be added to it using our
approach. Furthermore, we illustrate how adding redun-
dancy to the transmitted data can further reduce the cost
of adding security. Regarding the second scenario, we
focus on Infuse [16]. We show that the time to transmit
moderate amount of data is less than the time for trans-
mitting even a single packet with public keys. Finally,
we show that the same observation holds even for the
third scenario.

Organization of the paper. In Section 2, we describe the
threat model and security requirements of the secure bulk
data dissemination problem. In Section 3, we introduce the
secret instantiation algorithm that we use to sign the hash of
the first packet. In Section 4, we present our authentication
protocol in the three scenarios mentioned above. We add au-
thentication to the existing dissemination protocols and eval-
uate the performance. In Section 5, we propose additional
techniques to improve the performance for the first scenario.
In Section 6, we evaluate the performance enhancement by
applying these techniques. In Section 7, we compare with
related work, and discuss issues on key distribution and up-
dates. We conclude this paper in Section 8.

2 Threat Model and Security Requirements

We consider an adversary as one who tries to inject its own
code into sensor nodes or launch denial of service attacks that
aim to exhaust sensors’ battery power. It can eavesdrop on
any communication in the network. It is able to compromise
a sensor node, and acquire all information inside it. It can also
inject, change, delete packets. However, an adversary cannot
compromise the base station, which is securely protected.

We focus on authentication only , i.e., we assume that confi-
dentiality is not required, i.e., the data being transmitted are
public and can be acquired by the adversary. Hence, the data
are sent in plain text along with appropriate authentication.

The goals of the proposed protocol are as follows:

1. Authenticity. Each sensor must be able to verify that
data are from a trusted source and have not been changed
during transit. We consider the base station as a trusted
source, and is protected against compromise.

2. Node-compromise resilience. It must not be possible
that compromising a single sensor node will cause the
other parts of the network insecure.

3. Authentication before storage. A sensor should verify
the authenticity and integrity of a received packet before
writing it to flash. This is to reduce the time and energy
cost of receiving fake packets from an adversary in a
denial of service attack.

2



3 Protocol For Signing The Hash of The First
Packet

In order to sign the first hash in the hash chain, we can ei-
ther use public key based signatures or symmetric key based
signatures. As illustrated in Section 1, symmetric key based
signatures have much lower cost compared to public key
based signatures. Hence, we focus on use of symmetric keys.
Specifically, we use the secret instantiation algorithm [10,17],
which requires only O(log n) keys to be maintained at each
sensor. We describe the secret instantiation algorithm below.

The base station has a collection of secrets. Initially, each
sensor receives some subset of this collection. Whenever the
base station sends a message, it separately signs it using all
the secrets in its collection. Thus, message transmission is
associated with a collection of signatures, one for each se-
cret that the base station has. To sign message m, with secret
s, the base station can use algorithms such as MD5. (Addi-
tionally, if the length of the signature needs to be small, then
only a small part of this signature (e.g., last few bytes) may
be used.) Whenever a sensor receives this communication,
it verifies the signatures based on the collection of secrets it
has. Of course, a sensor will only be able to verify a subset of
the signatures, as it does not have all the secrets. It is required
that if all these signature verifications are successful, the sen-
sor can assume that the communication is truly from the base
station (and not from an outsider or anther sensor pretending
to be the base station).

To implement this algorithm, a 2-dimensional array of se-
crets with r rows (numbered 0..r − 1) and logr n (numbered
1.. log

r
n) columns (where 2 ≤ r ≤ n and n is the number

of sensors) is maintained. The base station knows all these
secrets. Each sensor is assigned a unique ID that is a number
with radix r. Observe that the ID is of length logrn. (Lead-
ing 0s are added if necessary.) This ID identifies the secrets
that a sensor should get. Specifically, if the first digit (most
significant) of the ID is x then the sensor gets xth secret in
the first column. If the second digit of the ID is y then the
sensor gets yth secret in the second column, and so on.

To illustrate the algorithm, let us consider an example. Let the
number of nodes be 16 and let r be 2. Then the base station
contains 8 (i.e., 2 log

2
16) secrets with 2 rows and 4 columns.

Each sensor has 4 (i.e., log
2
16) secrets. The set of secrets

a sensor has are decided by its unique ID. For example, if a
sensor’s ID is 0011, then it has the secrets on the first row in
the first two columns and the secrets on the second row in the
next two columns.

Theorem 1. If sensor j receives a message and it verifies all
the signatures based on the secrets it knows then that message
must be sent by the base station.

Proof: See [10] for proof.

Collusion. In the secret instantiation algorithm, compro-
mising a single sensor node will not compromise the entire
network. This is due to the facts that each sensor has only a
subset of the secrets, and if an adversary attempts to pretend
to be the base station, it needs to get all the secrets. How-
ever, colluding sensors may be able to obtain all the keys and,

thereby, pretend to be the base station. By choosing an ap-
propriate value for r, this key distribution provides a tradeoff
between level of collusion resistance and number of keys at
the base station.

Computation cost of signing/verifying the signatures and
computing the hashes. The hash chain and signatures are
computed only once at the base station. The sensors sim-
ply use/forward the signatures received from the base station.
Moreover, since we use symmetric keys for signatures, the
overhead is much lower than (about 0.0005 times) the cost of
using the asymmetric keys. While hash computation is per-
formed for every packet, it is very efficient (less than 10ms
per packet). Hence, hash computation does not significantly
increase the computation cost either.

4 Performance of Authentication Protocol In
Three Scenarios

In this section, we show the effectiveness of our approach
in the three scenarios discussed in Section 1. First, in Section
4.1, we discuss the third scenario where the sensors are within
a single hop of the source. Subsequently, in Section 4.2, we
discuss the second scenario where a moderate amount of data
(1-4KB) is sent using a fine-grained pipelining (i.e., packet-
level pipelining) protocol. In Section 4.3, we discuss the first
scenario where large amount of data is sent using a coarse-
grained pipelining (i.e., segment-level pipelining) protocol.

4.1 Secure Single-hop Dissemination

In this section, we focus on the scenario where the source
node is disseminating a moderate amount of data to all the
receivers within single hop. This typically happens in a
small/indoor network, or within a cluster in a large network.
The source node can be the base station or a cluster head de-
pending on how the protocol is used. Any single-hop/multi-
hop reprogramming protocol (e.g., [5, 12, 16, 18, 25]) can be
used for dissemination in this scenario. We use a simple
CSMA-based protocol (similar to that in [5]), which is de-
scribed as follows.

The base station computes hash for each data packet. The
hashes are put into one or a few packets (called hash pack-
ets). The base station then computes hashes for these hash
packets, and accommodates them into one or a few higher-
level hash packets. In this way, the hashes of packets are
organized into a hash tree (this uses the approach in [7]). The
base station signs the root of the hash tree using all the se-
crets it has (based on our symmetric key algorithm). The
base station sends the signatures at first, followed by the hash
tree, from higher level or lower level. After the hash tree has
been sent, it sends the data packets. Because the hashes are
sent before the data packets, when a sensor receives a data
packet, it can authenticate this packet immediately using the
hash value. After the base station has transmitted all the data
packets, it will send query several times. If the base station
receives requests from the receivers, it will retransmit the re-
quested packets. This continues until all the receivers have
received all the hashes and data packets. We call this ap-
proach secure single-hop dissemination with hash tree.
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Alternatively, we can also use the basic hash chain approach,
as described in Section 1. The base station sends the signa-
tures of the hash of the first packet, the first packet contains
the hash of the second packet, and so on. We call it secure
single-hop dissemination with hash chain.

We run this simple protocol (with hash tree and hash chain
variations) on a special purpose simulator. The base station
sends the signatures and the hash packets twice for robust-
ness. The payload size of a data packet is 70 bytes, including
6 bytes header and 64 bytes data. A hash is 4 bytes long.
Hence, each packet can carry 16 hashes. The signatures fit in
one packet.

The transmission interval of a data packet is 45ms. When a
receiver receives a query packet, it will wait for a short ran-
dom duration before sending a request. We vary the data size
from 0.5KB to 4KB, and simulated the two approaches at dif-
ferent receiver set sizes. Specifically, the number of receivers
is set to 5, 15, 50. Packet loss rate is 5%. We repeat the
simulations three times, and use the average.

In Figure 1, we show the propagation time of this secure sin-
gle hop protocol at different data sizes and different receiver
set sizes. For comparison, we also show the time required to
send a single packet through the network. According to [33],
the time required for the base station to sign a packet with
its private key is 21.5s. And, the time required to verify
the packet at each sensor is 0.79s. Thus, the time to prop-
agate one packet to a single hop network is at least 22.29s
(21.5s+0.79s). From Figure 1, we can see that using our sym-
metric key based authentication with hash tree approach (re-
spectively, with hash chain approach), the time to send 4KB
data through the network (including request and retransmis-
sion time) is only 53-63% (respectively, is close to) the time
to transmit a single packet to the network using public key
based authentication. This shows that using symmetric key
based authentication can significantly reduce the time (and
energy) cost compared to the public key based authentication.
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Figure 1. Propagation time in a single hop network. (a)
hash tree approach (b) hash chain approach. (For approaches
with public key schemes, only signing/verification cost is
considered. Communication cost, although possibly signif-
icant when the size of signature is large, is not considered.
But for our protocol, both signing/verication cost and com-
munication cost are considered.)

Memory requirement. The memory requirement of the pro-
tocol are listed as following. First, log

r
n secrets are main-

tained at each sensor. For example, in a 10x10 network, the

number of secrets maintained at each sensor is at most 7. Sec-
ond, the signatures from the base station for each segment
need to be stored either in memory or in flash. Third, the
signing/verification process consumes some amount of mem-
ory. This amount of memory is much lower compared to the
asymmetric key based approaches. Fourth, in the hash tree
approach, each sensor caches all the received hashes in RAM
(and use them to verify the data packets later). If the length of
the data stream is 4KB (64 packets), the amount of memory
for storing the hashes is 256 bytes. If the hash chain approach
is used, only the hash contained in the last packet that has
been authenticated needs to be cached in RAM. In this case,
the RAM requirement for hash cache is only 4 bytes.

4.2 Secure Multihop Dissemination with Fine-
Grained Pipelining

In this section, we focus on the scenario where the base sta-
tion disseminates a moderate size data stream (of size 0.5-
3KB) across the network in a fine-grained pipelining fash-
ion. Such fine-grained pipelining service can be achieved us-
ing any TDMA based data dissemination protocol (e.g., In-
fuse [16], Sprinkler [25]). To illustrate secure dissemination
in a multihop network with fine-grained pipelining, we use
Infuse [16] to disseminate the data across the network. We
note that the evaluation results presented in this section are
applicable to other data dissemination protocols that use fine-
grained pipelining.

Overview of Infuse. Infuse is a reliable TDMA based
data dissemination protocol. Since we consider grid based
networks in this paper, we present an overview of Infuse for
such a network. The basic idea of Infuse is to assign time
slots in such a way that no two nodes within distance two (in
the grid) of each other should get the same slot. This ensures
that whenever any node transmits data, nodes within distance
1 can always receive that message without collision. For the
case where the communication range of a node exceeds the
distance with the closest neighbor, nodes can be assigned dif-
ferent frequencies to prevent collision. Note that Mica motes
can provide multiple channels (e.g., 54 channels in the 902-
928 MHz frequency band) on which they can transmit [1].
However, they can listen to only one frequency at a time. To
illustrate this, consider a line network a-b-c-d-e. Suppose that
sensors can communicate/interfere with nodes upto distance
2 then, a and d should transmit on different frequencies. De-
pending on the communication/interference range of the sen-
sors, the number of frequency channels required varies. The
issue of number of frequency channels required is outside the
scope of this paper. Although TDMA ensures collision free-
dom, messages can still be lost due to random channel errors.
To deal with this, Infuse uses sliding window based recovery
mechanism and implicit acknowledgments (by listening to the
transmissions of the neighbors).

Evaluation with Infuse. We authenticate the data stream
disseminated with Infuse using the basic hash chain approach
discussed in Section 1. We call this protocol Infuse+Auth.
We simulate the protocol in Prowler [30], a probabilistic
wireless network simulator for Mica motes. The goal of
the simulations is to illustrate that the propagation time with
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Infuse+Auth is significantly less than that with public key
scheme. We disseminate data of sizes 0.5-3KB across 10x1,
5x5, and 10x10 networks. The payload size of the messages
transmitted by Infuse is 16 bytes. In our simulations, we use
4 packets as the sliding window size (for dealing with random
channel errors). Since random channel errors can cause the
link reliability to go down, we choose a conservative estimate
of 95% link reliability in our simulations.

Figure 2 shows the propagation time of Infuse+Auth. As
observed from the figure, the time to disseminate data with
Infuse+Auth is significantly less than the time to propagate
one packet across the network using public key mechanism.
Based on [33], the analytical result on time required to sign
and verify a packet across a 10x1 network (respectively,
5x5 and 10x10 networks) is 28.61s (respectively, 27.82s and
35.72s). On the other hand, with Infuse+Auth, the time to
disseminate the data stream of size 3KB is approximately the
same as the time required with the public key scheme for a
single packet. Thus, the time to securely disseminate a mod-
erate size data across a multihop network is significantly less
with the use of symmetric keys. (Note that due to multiple
paths in a 10x10 network, a sensor may recover a lost packet
from a different neighbor. For this reason, the transmission
time lower in a 10x10 network than in a 10x1 network. For
details of such behavior, we refer the reader to [16], as this
issue is not central to the topic of this paper.)
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Figure 2. Propagation time with window size = 4. (For ap-
proaches with public key schemes, only signing/verification
cost is considered. Communication cost, although possibly
significant when the size of signature is large, is not consid-
ered. But for our protocol, both signing/verication cost and
communication cost are considered.)

Memory requirement. Similar to the discussion in Sec-
tion 4.1, Infuse+Auth also maintains log

r
n secrets at each

sensor. Additionally, since Infuse+Auth uses the basic hash
chain approach, only the hash contained in the last authenti-
cated packet needs to be kept in RAM. Finally, Infuse main-
tains a sliding window of 4 packets (=64 bytes, as the packet
size in Infuse is 16 bytes) to deal with the problem of random
message losses. However, this requirement is inherent to In-
fuse irrespective of whether authentication is enabled or not.

4.3 Secure Multihop Dissemination with Coarse-
Grained Pipelining

Coarse-grained pipelining are implemented in protocols such
as MNP [18] and Deluge [12]. In these protocols, the data

stream is divided into segments and pipelining is provided at
the segment level. Security of Deluge is considered in [8]
and uses the scheme in [9] that is described in Section 1.
Using our approach would be identical except that our ap-
proach reduces the cost of signing and verifying the hash of
the first packet. Thus, using our approach would reduce the
cost of data propagation by approximately 22 seconds than
that in [8]. Likewise, if hash tree approach is used with sym-
metric keys then the data propagation time would improve by
approximately 22 seconds over that in [7]. For this reason
as well as the fact that the data propagation time in [7, 8] is
in hundreds of seconds, we do not provide detailed simula-
tion results for this scenario. Instead, in the next section, we
present additional mechanisms that would reduce the cost of
secure data dissemination in coarse-grained pipelining.

5 Performance Enhancement

In this section, we propose three techniques to improve the
performance of our authentication protocol when it is used
to disseminate a large amount of data in a multihop net-
work with coarse-grained pipelining. We do a case study on
MNP [18]. We note that the design and simulation results we
present in this section and Section 6 are applicable to other
data dissemination protocols as well.

In Section 5.1, we give an overview of MNP. In Section 5.2,
we describe how we use the keys and hashes to sign the data
stream. Specifically, we propose the double connected hash
chains, combined with symmetric key signatures, to authen-
ticate the data stream. We also propose two other schemes
to further improve the efficiency: creating a cache on the re-
ceiver side (Section 5.3) and using forward error correction
(FEC) (Section 5.4). We will evaluate the performance of our
authentication protocol and show the effect of applying these
schemes in Section 6.

5.1 A Brief Overview of MNP

MNP is a bulk data dissemination protocol, which provides
a reliable and energy efficient service to propagate a large
amount of data to all the sensors in the network over radio.
Data are sent in segments. Each segment contains K packets.
Sensors must receive the segments in order. A sensor (or the
base station) advertises segment N only if all the packets in
segments 1-N are available. Within a segment, the packets
may be received out of order. When the neighbors receive
the advertisements for a segment, if they have not received
that segment completely, they will send requests to the ad-
vertiser. This request also specifies the packets that the re-
quester wants. The sender then transmits the requested pack-
ets in the segment. This process continues until every packet
from the base station is received by every sensor. Note that a
sender can send either an entire segment or a partial segment
(only includes the packets that are requested by at least one
receiver). For simplicity of presentation, we present the pro-
tocol as if the sender only sends an entire segment. The ex-
tension for sending a partial segment is straightforward, and
hence omitted.

To reduce the message collision problem, MNP uses a sender
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Figure 3. The double connected hash chain (segment i).

selection algorithm to try to guarantee that there is only one
sender in a neighborhood at a time. In the sender selection al-
gorithm, sensors compete with each other based on the num-
ber of requests (higher the better) they have received and the
ID of the segment (lower the better) they are transmitting. If
a sensor wins in the sender selection algorithm and becomes
the sender, it transmits the corresponding segment it adver-
tised earlier. The sensors that are not transmitting or receiving
data are put to sleep state to save energy. The sender selec-
tion algorithm effectively reduces message collision. Hence,
in MNP, packet loss is caused by random effect, rather than
collisions.

5.2 Double Connected Hash Chain

In the basic hash chain scheme (cf. Section 1), the data pack-
ets have to be verified in order. Losing a single data packet
can lead to all the succeeding packets to be thrown away. This
leads to significant time/energy waste. To address this prob-
lem, we propose a double connected hash chain to enhance
the inter-connection among the packets, as illustrated in Fig-
ure 3. Assume that the entire data stream has N (N ≥ 1) seg-
ments and each segment contains K packets. We represent
the jth data packet of the ith segment as P (i, j), i = 1..N ,
j = 1..K. (We also refer to it as packet j for simplicity,
as long as it does not cause confusion.) The hash of packet
P (i, j) is denoted as H(i, j). As shown in Figure 3, a seg-
ment is further divided into hash groups. Each hash group
contains m packets. m is an integer factor of K. A packet
P (i, j) contains a data part and two hashes: the hash of the
next packet (with successive packet ID, e.g., P (i, j + 1)),
and the hash of the corresponding packet in the next hash
group (e.g., P (i, j+m)). In Figure 3, an arrow pointing from
packet j to packet i indicates that packet i contains the hash
of packet j. In this way, we construct multiple authentication
paths for verifying a data packet. To illustrate how the dou-
ble connected hash chain works, consider the scenario where
a single packet (packet 2) is lost, while all other packets in the
segment have been received. If we use the double connected
hash chain, all the packets starting from packet m+1 can be
authenticated because packet 1 contains the hash for packet
m+1.

5.3 Caching

Data cache and hash cache. We use two caches: a data
cache, for storing the data packets, and a hash cache, for stor-
ing the hashes. Assuming a hash is 4 bytes long and the size
of a segment is 64 packets, we only need 256 bytes to store all
the hashes for the entire segment. On the other hand, storing
data packets requires much more space. To reduce the mem-
ory consumption, we divide a segment into cache groups. At
any given time, each sensor caches data packets only from
one cache group. The cache group that is currently kept in
the data cache is called the active cache group. Note that
when a sensor writes a data packet to its data cache, it writes
the data part as well as the two hashes. By doing this, when it
authenticates a packet, the hashes contained in the packet are
authenticated at the same time. Only those hashes that have
been authenticated are written to the hash cache.

When a receiver receives a data packet, if it needs the packet,
it computes the cache group this packet belongs to. If the
packet is in the active cache group, the sensor stores the
packet to its assigned slot in the data cache. Otherwise, it
changes the active cache group to the one that this data packet
belongs to, and stores the received packet to the data cache.
When a sensor changes its active cache group, if there are
data packets in the data cache that are not yet authenticated,
these packets are discarded. Moreover, when a sensor writes
a packet to the data cache, it also checks if the hash cache
contains the hash for this packet. If so, the packet is authen-
ticated: the data part of the packet is written to EEPROM,
and the hashes are written to the hash cache (if they are not
already in the hash cache).

When a hash is written to the hash cache, the sensor checks
the data cache to see if the newly added hash can be used
to authenticate any data packet. If so, the packet is authen-
ticated, and the two hashes contained in this packet can be
added to the hash cache, which could in turn be used to au-
thenticate more packets in the data cache. Hence, one re-
ception of a data packet can possibly lead to several contin-
uous writes to EEPROM. These writes to EEPROM must be
queued and data are buffered when necessary so that the era-
sure of the data cache will not cause loss of data.

5.4 Forward Error Correction

MNP, as well as all other existing data dissemination pro-
tocols [12, 16, 25, 31], uses automatic repeat request (ARQ)
scheme to recover the lost packets. In ARQ schemes, a re-
ceiver detects its own losses, and informs the sender of the
missing packets, either by sending requests or acknowledge-
ments. The sender retransmits the packets that are requested
by the receivers. In the current problem, a single lost packet
may cause a sensor to discard other (valid but not yet authen-
ticated) packets. Hence, in order to reduce packet loss, in our
protocol, we use forward error correction (FEC).

FEC provides reliability by transmitting redundant packets in
a proactive manner. Due to computational limits on sensors,
we use the simple XOR FEC scheme. For simple XOR code,
each transmission group has only one parity packet, which is
the XOR or all the source packets in the group. XOR code
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is very simple to implement, and it can repair a single packet
loss in a transmission group.

The data cache provides required memory space for encoding
and decoding XOR parity packets, hence, there is no addi-
tional overhead on memory consumption for employing FEC.
In our approach, a sender transmits a parity packet after trans-
mitting t data packets (t is the size of the transmission group).
The parity packet is XOR of the t data packets that proceed-
ing it. We require that t be not larger than the size of the data
cache.

When a receiver receives a parity packet, it checks if exactly
one packet is missing in the transmission group that this par-
ity packet belongs to. If so, it uses the parity packet to re-
cover the packet that is missing. When a receiver tries to fix
a missing packet by decoding a parity packet, if all the re-
ceived packets in this transmission group are cached in the
data cache (i.e., they are in the active cache group), decoding
the parity packet can be conducted directly. In the case that
some data packets were received in earlier transmissions and
are not in the data cache, they must be read from EEPROM to
the data cache. As reading a packet from EEPROM is an opti-
mized operation with low cost, employing simple XOR code
in our protocol does not incur much time/energy overhead.

6 Evaluation of Enhancement

We integrate our protocol with MNP [18]. We refer to the
integrated protocol as MNP+Auth. We simulate MNP+Auth
using TOSSIM [20]. TOSSIM is a discrete event simulator
for TinyOS wireless sensor networks. In TOSSIM, the net-
work is modeled as a directed graph. Each vertex in the graph
is a sensor node. Each edge has a bit-error rate, representing
the probability with which a bit can be corrupted if it is sent
along this link.

In our simulation, each segment has 64 data packets. The
size of a hash group m is 8. The simulations are performed
in a grid topology. The base station is at the corner of the
network. The inter-node distance is 10 feet. We consider a
10x10 network, i.e., the number of sensors in the network is
100. We set r to be 2. In this case, the base station contains 14
(i.e., 2 log

2
100) secrets, and each sensor has 7 secrets. Due to

the fact that the execution time of each simulation is of order
of tens of hours, we do not provide confidence intervals.

We set the packet size to 70 bytes, among which, 6 bytes are
used for the packet header (including source node ID, desti-
nation node ID, program ID, segment ID, packet type), the re-
maining 64 bytes are for the data and hashes. In MNP+Auth,
each data packet carries 2 hashes. Each hash is 4 bytes long.
Hence, excluding the hashes, the effective data payload is 56
bytes. Therefore, in every data packet, 8 out of 64 bytes of
the payload is consumed in authentication.

We first analyze the memory requirement of MNP+Auth in
Section 6.1. Then, we show the performance of MNP+Auth
in Section 6.2. Due to limitation of space, we present perfor-
mance only in terms of propagation time. We refer the reader
to [34] for more detailed evaluation results (e.g., energy con-
sumption, communication overhead). Finally, in Section 6.3,
we investigate how our design decisions (i.e., double con-
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Figure 4. Propagation time of MNP and MNP+Auth.

nected hash chain, caching and FEC techniques) affect the
performance.

6.1 Memory Requirement

The memory requirement of our authentication protocol with
the enhancements in Section 5 is as follows. The amount of
memory required for caching the secrets and the signatures,
and that required during signing/verification process are the
same as what we have discussed for the secure single-hop
dissemination protocol (cf. Section 4.1). In addition, the
data cache and the hash cache contribute to the major part of
memory consumption. If the data cache contains 8 packets,
each packet is 64 bytes long (including the data part and the
hashes), plus 1-byte packet ID (local ID, used inside a seg-
ment) and a valid bit (to indicate if the packet is in the data
cache), the data cache requires 521 bytes. As we discussed in
Section 5.3, the hash cache needs 256 bytes memory. More-
over, a variable is needed to record the current active cache
group. This only needs to be 1 byte long. And, as discussed
in Section 5.4, since the data cache provides the memory re-
quired for FEC encoding/decoding, there is no extra memory
overhead by applying FEC scheme.

6.2 Performance of MNP+Auth

We set the size of the data cache c to 8 packets. The size of
FEC transmission group t is set to the same as the data cache
size, which is also 8 packets. As we have pointed out ear-
lier, 8 out of 64 bytes data payload in a data packet are used
for hashes. Therefore, transmitting one segment (64 packets
per segment) in MNP disseminates 4KB data, while trans-
mitting one segment in MNP+Auth only disseminates 3.5KB
data. In Figure 4, we show the propagation time of MNP
and MNP+Auth at different data stream lengths. We can see
that given a certain amount of data to transmit, the propa-
gation time required by MNP+Auth is 37%-74% higher than
that required by MNP. This cost is much lower than the case
where we simply use the basic hash chain approach without
optimization. In the latter case, the propagation time of the
secured version of MNP is 6 or 7 times that of the original
MNP. The same conclusion holds for Deluge [12], as shown
in [7, 8]. Hence, the performance improvement by applying
the techniques we proposed in Sections 5.2-5.4 is significant.

6.3 Analysis of Design Options

In this section, we analyze how the techniques we proposed
in Sections 5.2-5.4 contribute to the overall performance. We
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Figure 5. Comparison of the basic hash chain with the dou-
ble connected hash chain.

evaluate each of them by disabling/replacing/varying it while
fixing other parts of the protocol.

Comparing basic hash chain with double connected hash
chain. To evaluate the effectiveness of the double connected
hash chain, we compare it with the case where the basic hash
chain is used (cf. Figure 5).

We can see that using the double connected hash chain, the
performance is significantly improved compared to the basic
hash chain. Replacing the basic hash chain with the double
connected hash chain can reduce the propagation time by 73-
81%. Specifically, the time to disseminate 10.7KB data using
the basic hash chain scheme is 4570 seconds, which is 4.2
times the time for disseminating the same amount of data us-
ing the double connected hash chain (1087 seconds).

Varying the size of the data cache. To evaluate the ef-
fectiveness of data cache, we vary the size of the data cache
from 8 packets to 64 packets. In the case that the data cache
size is 64 packets, the entire segment can be stored in mem-
ory. In this case, even if the data packets arrive out of order,
they can be temporarily saved in the data cache, waiting to
be authenticated later. Hence, the basic hash chain works
well in this scenario. In Figure 6 (a), we show the propaga-
tion time of MNP+Auth for disseminating different amounts
of data, when the data cache size varies. For comparison,
we also show the corresponding performance of MNP. In the
case that the data cache size is 64 packets, we use the basic
hash chain, instead of the double connected hash chain, to re-
duce the cost of distributing hashes. As shown in Figure 6
(a), when the data cache size is 8 packets, 16 packets, and 32
packets, the lines that represent the propagation time in Fig-
ure 6 (a) intersect with each other. In other words, there is no
significant performance improvement when we increase the
size of the data cache.

By increasing the cache size, we are able to cache more hash
groups in memory. This helps to improve the performance
only if some delayed packets in the earlier group(s) arrive
later. However, this long delay of packets is uncommon
(although short delays of packets within a cache group are
common) for two reasons: the sensors send packets in order
(with increasing packet IDs), and sensors communicate with
their direct neighbors (i.e., there is no path delay). More-
over, the FEC encoding/decoding is done in the active cache
group. Therefore, setting the data cache size to 8 packets
(which is the same as the hash group size and FEC transmis-
sion group size) is optimal (for reducing memory consump-

tion and achieving reasonable performance), unless memory
is big enough to accommodate the entire segment.

If we increase the data cache size to 64 packets, the propaga-
tion time is reduced significantly. In this case, all the received
packets are buffered in memory, the only cost is on distribut-
ing the hashes. Hence, when the data cache size is 64 packets,
the propagation time is only a little higher than that of MNP.
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Figure 6. Analysis of design options. (a) varying the data
cache size from 8 packets to 64 packets. (b) effect of using
FEC. The data cache size is 8 packets.

Effect of using FEC. Forward error correction (FEC) re-
duces the number of requests and retransmits by sending ex-
tra parity packets. In this section, we investigate if the use of
FEC is beneficial. The size of the FEC transmission group
and the size of the data cache are both 8 packets. In Figure 6
(b), we compare the performance of MNP+Auth in the cases
that FEC is enabled and disabled. We can see that by employ-
ing FEC, we can reduce the propagation time by 5-29%.

7 Discussion

In this section, we first compare our protocol with existing
work in secure data dissemination (Section 7.1), then we dis-
cuss the issues of initial key distribution and key updates
(Section 7.2).

7.1 Comparison With Related Work

Security of data dissemination in sensor networks is studied
in [2, 7, 8, 14, 15, 19, 21, 22, 26, 27, 29]. Of these, [7, 8, 19]
use asymmetric keys; the base station signs the (hash of) data
using the private key and the sensors use the corresponding
public key to authenticate the data. As discussed in Section 4,
the cost of asymmetric keys is exorbitant when the data size is
moderate (1-4KB). In particular, in Section 4, we showed that
for several scenarios of moderate data dissemination, the cost
of signing and sending one packet using asymmetric keys is
close to the cost of sending 3-4 KB of data using symmet-
ric keys. Finally, our approach is orthogonal to that in [7],
i.e., as discussed in Section 4.3, our approach of using sym-
metric keys could be used in [7] to reduce the cost of those
algorithms.

Our approach also differs from µTESLA [27] and its exten-
sions [21, 22] in that in [21, 22, 27], after-the-fact authentica-
tion is provided. In particular, in these approaches, the sen-
sors first receive a packet (set of packets) and subsequently
receive the key to authenticate it. To ensure security of such
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a protocol, the time to reveal the key must be large enough
so that all nodes receive the packet (respectively, set of pack-
ets) before the key is revealed (loose time synchronization
is required in these protocols). In the context of bulk data
transmission, this would require the sensors to buffer a large
amount of data before it can be authenticated. With limited
storage on sensors, this would require the data to be stored
on EEPROM, thereby, opening up the possibility of denial
of service attack. By contrast, in our approach, only au-
thenticated packets are stored on EEPROM. Thus, the ap-
proaches in [21, 22, 27] are applicable in broadcasts of small
data whereas our approach is also applicable in broadcasts of
bulk data as well. Moreover, as discussed later in this section,
it is possible to combine the features of our algorithm and that
in [27].

One-time signatures commit a secret key via one-way func-
tions, hence, have much lower signing and verification time
compared to asymmetric primitives. One-time signatures
have been used in many broadcast authentication protocols
[2,14,15,26,29]. BiBa [26] performs authenticated broadcast
via pre-computed hash collisions and chains. HORS [29] im-
proves BiBa by reducing the signature generation time. BiBa
and HORS are inappropriate for sensor networks due to its
large public key size (e.g., a typical public key size is 20KB).
Since the public key must be stored on all sensors, it is de-
sirable to keep its size small. The approach in [2, 14, 15] de-
creases the public key size of HORS by constructing Merkle
trees [24] on the secret keys, and use the roots of the Merkle
trees as the public key. Even with this reduction, the public
key size is still hundreds to thousands of bytes, which is much
larger compared to the size of secrets (e.g., at most 7 secrets
in a 10x10 network) in our protocol. Moreover, the signa-
ture size in [2, 14, 15] is also large. For example, in [15], the
typical signature size is 690-2560 bytes. Hence, when the au-
thors apply their one-time signature protocol to Deluge [12],
the first few pages are used for sending the signature. By
contrast, in our protocol, all the signatures are sent in one (or
a few) message(s). Therefore, our protocol has much lower
memory requirement and communication overhead.

7.2 Key Distribution and Updates

As discussed in Section 3, the initial keys are assigned to sen-
sors at deployment. Alternate approaches are also possible
for distribution. For example, at deployment, the sensors may
include all the secrets and then depending upon their logical
ID (either known at deployment or communicated thereafter),
they can delete the secrets they are not supposed to have. This
approach is based on the assumption (true in many sensor
network deployments) that the initial communication among
sensors is secure and that the sensors cannot be compromised
for a certain duration after deployment.

As discussed in Section 3, the approach in [10, 17] allows us
to provide a tradeoff between the level of security and the
number of secrets maintained by the base station. The de-
signer can choose an appropriate value of r to ensure that the
effect of collusion is moderate. Increasing the value of r in-
creases the overhead only marginally, as the cost of signing
with a symmetric key is very small.

Also, our approach can be combined with the approach in
[21, 22, 27]. In particular, instead of maintaining a single
value for each secret, we could have a hash chain of values
for each secret. (Optimizations from [3] allow only a little
more than log

2
n entries from a hash chain to be maintained

at the base station.) The last value in the hash chain is made
available to the sensors at the time of deployment. However,
periodically, the base station will reveal the previous value
in the hash chain and this value would be encrypted with the
current secret to ensure that only those sensors that have the
old secret can obtain the new one.

8. Conclusion

In this paper, we showed how authentication could be
achieved for bulk data dissemination in sensor networks. We
used symmetric key distribution algorithms from [10, 17] to
ensure that the base station can communicate securely with
each sensor in the network. Based on the security of the key
distribution, our protocol allows sensors to conclude that the
data is truly transmitted by the base station.

We considered the secure data dissemination problem in
three scenarios: multihop dissemination with coarse-grained
(segment-level) pipelining, multihop dissemination with fine-
grained (packet-level) pipelining, and single-hop dissemina-
tion. We showed that the use of symmetric keys can signif-
icantly reduce the cost of disseminating a moderate amount
of data, especially in the second and third scenarios. In par-
ticular, the time to sign and verify a single packet using pub-
lic key scheme is more than 22 seconds. Within the same
amount of time, we can disseminate 3-4KB of data across
the network using symmetric key scheme. For the first sce-
nario, we proposed additional mechanisms to reduce the cost
of secure data dissemination. We showed that the basic hash
chain that is commonly used for authenticating data streams
is not efficient in the presence of packet loss, as it requires
that packets arrive in order. We proposed the double con-
nected hash chain to strengthen the inter-connection among
the packets so that loss of a few packets does not fail the au-
thentication for the entire segment. To further improve the
performance, we proposed a caching scheme and employed
forward error correction (FEC) technique to try to minimize
the effect of packet loss.

We showed that our algorithm can be easily applied to dif-
ferent types of data dissemination protocols: simple non-
pipelined, fine-grained pipelined (e.g., Infuse [16], Sprin-
kler [25]), and coarse-grained pipelined (e.g., MNP [18], Del-
uge [12]). Hence, our protocol is applicable to various appli-
cation scenarios. We analyzed/simulated the overhead of our
protocol, and showed the effectiveness of our design in en-
hancing the performance.

As discussed in Section 3, the key distribution algorithm al-
lows the designer to choose the appropriate parameter, r, to
determine the desired level of collusion resistance. With the
use of this parameter, the base station maintains rlogrn (n
is the number of sensors) secrets and each sensor maintains
logrn secrets. With increased value of r, the collusion resis-
tance increases, and each sensor maintains fewer secrets. As
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a tradeoff, the base station maintains more secrets, and the
cost of creating/verifying the signatures increases. For ex-
ample, in a 10x10 network, if we increase r from 2 to 10,
the number of secrets maintained at the base station increases
from 14 to 20. However, due to the facts that the symmetric
key operation is very fast (e.g., as discussed in Section 1, the
execution time of encrypting/decrypting a 8-byte block using
RC5 is only 0.26ms) and these secrets are used only a few
times during data dissemination, this increase in the cost of
signing/verification is negligible. Hence, the performance of
data dissemination changes minimally when we increase the
level of collusion resistance.
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