
Approximate Causal Observer
�

Sandeep S. Kulkarni Mahesh (Umamaheswaran) Arumugam
Software Engineering and Network Systems Lab

Department of Computer Science and Engineering
Michigan State University, East Lansing MI 48824

Abstract

In this paper, we focus on the problem of approximate causal delivery. This problem identifies the tradeoff
between causal delivery and timely delivery of messages. Causal delivery requires that delivery of a message,
say � , be delayed until all messages on whom � is causally dependent are delivered. By contrast, timely
delivery requires that messages be delivered as soon as possible. However, the requirements of causal delivery
and timely delivery are conflicting. We show how a simple logical timestamp program can be used to obtain
a solution for approximate causal observer. This solution is intended for sensor networks that provide simple
guarantees about the clock drift among sensors and about maximum delay of messages that are not lost. Our
solution lets the sensors to choose the level of causality violations it can tolerate (��� or more) and the time for
which it will have to buffer the received messages. We also show that our solution provides a continuum where
the application can choose the size of the timestamps it maintains by identifying the level of causality violations
it can tolerate.

Keywords: Causal Delivery, Timeliness, Logical Timestamps, Sensor Networks

1 Introduction

The ability to observe distributed computations is one of
the important problems in many systems, especially, in
sensor networks (e.g., MICA motes [1, 2]). For example,
consider an application in sensor networks where a group
of sensors need to help pursuers track moving evaders [3].
In such a system, the sensors communicate their observa-
tions about the evader(s) they are tracking with pursuer(s).
The pursuers in turn communicate with the base station
or an observer. The base station is more powerful (e.g,
PC) and is responsible for providing visualization. Thus,
the base station observes the communication among sen-
sors and uses its high computing power/memory to dis-
play/interpret the communication among sensors.

The order in which the observer receives messages may
be different from the order in which the communica-
tion occurred in the network, due to message colli-
sions/corruptions, routing, etc. Hence, the observer needs
to reorder messages consistently. One way to obtain such

1Email {sandeep,arumugam}@cse.msu.edu. Tel: +1-517-
355-2387. Fax: +1-517-432-1061. This work was partially sponsored by
NSF CAREER CCR-0092724, DARPA Grant OSURS01-C-1901, ONR
Grant N00014-01-1-0744, NSF Equipment Grant EIA-0130724, and a
grant from Michigan State University

consistent view is to ensure causal order delivery at the ob-
server. Another requirement for such observers is that they
should be timely, i.e., the observer needs to reconstruct the
underlying computation quickly. For example, in the sen-
sor network application discussed above, the visualization
of the underlying computation should be in real-time and,
hence, the visualization should not significantly lag behind
the original computation.

Since causal delivery and timeliness are conflicting goals,
it is necessary to develop protocols where the observer can
choose the level of causality violations it can accept to en-
sure timely delivery of messages. We call this the problem
of approximate causal delivery. And, an observer that pro-
vides approximate causal delivery is called approximate
causal observer.

Contributions of the paper. We focus on adapting the
algorithm in [4] for obtaining approximate causal delivery.
The main contributions of this paper are as follows:

� We present two algorithms for approximate delivery.
Based on the ability to tolerate causality violations,
the first algorithm allows the observer to reduce the
delivery time of messages. In the second algorithm,
the system checks the message queue before delivery
to determine if it might violate the requirements of

1

causal delivery, and hence, we reduce the causality
violations further.

� We study the effect of changing various parame-
ters (maximum clock drift among sensors, maximum
message delay, and message rate) on approximate
causal delivery through simulations.

� We show that the timestamp provides a continuum,
i.e., the application developer can choose the size of
timestamp, as small as � bytes, considering the num-
ber of causality violations the application can handle.

Organization of the paper. The rest of the paper is or-
ganized as follows. In Section 2, we present the algorithm
for causal delivery from [4]. In Section 3, we present our
approaches for approximate causal delivery. In Sections
4 and 5, we present our simulation model and the results.
Finally, in Section 6, we make concluding remarks.

2 Logical Timestamps and Causal Delivery

Based on the result from [5], the system must provide
some guarantees that will enable the observer to obtain a
tradeoff between causal delivery and timely delivery. We
focus on the following two guarantees about the bound on
maximum clock drift (for example, using [6]) among dif-
ferent processes (sensors) and the bound on message de-
lay.

Guarantees of the distributed system (sensor network).���
. Physical clock at process � , ���	� � , is non-decreasing,
and at any time, the difference between the clock values
of any two processes is bounded by
 . In other words,� �
������� ����� ��������� ������
���

. Let �! be a message sent by process � to � . Also, let" �$# denote the clock value of � when � sent �% , and
let �'& # denote the clock value of � when � received
� . We require that � should receive � within time (
unless �% is lost. In other words,)$) �'& # �) " � #!* (
+$+-,.�'& #�/10 +

Before presenting the programs, we define the notion of
happened-before, 243 , among events.

Happened-before. The happened-before relation [7] is
the smallest transitive relation that satisfies, for any events5 , 6 , 5 27386 if (1) 5 and 6 are events on the same process
and 5 occurred before 6 , or (2) 5 is a send event in one
process and 6 is the corresponding receive event in another
process.

Logical timestamp program. In the solution to the
logical timestamps proposed in [4], the timestamp of an

event 5'9 at process : is of the form ;=<?>A@ 5'9CB�D @ 5�9EB	F�G @ 5�9
H ,
where <?>A@ 5�9 denotes the physical clock value of : when5 9 was created. The variable D @ 5 9 denotes the difference
between the knowledge : had about the maximum clock
value in the system and the physical clock value of : . The
variable FIG @ 5 9 is an array of size JLK . The variable F�G @ 5 9CM >ON ,
2PKRQS>UTVK , captures the knowledge about the number of
events 6 such that <W@X6�YZ<W@ 5�9\[> and 6�273 5 . The program
for logical timestamps is given in Figure 1.

Initially:
����� �
����� �
�$]�� � /_^ ,� �`�'��a/V^ �W�Ebc� �\d �fe /g^ �h�Ebc� �\d ^ e / �

Local event i or send event i (message being sent is �)
]'� ��� / �gjEk) ^ �O�'� � *]�� ���l���	� �W+� �`�C�m
n�o�`pq
U���Lbc� �\d ��ec� / �Lbc� �\d � * ���	� �P���'� �'e
�Lbc� �\d ^ ec� / �Lbc� �\d ^ e * �
�'� �%� / ���	� �
�'� ih W�$]�� i� W���Ebr� ih �� / �'� �
�$]'� �
���Lbc� �
if ih is a send event then

��� � ��]'� � ���Ebr� � � / ��� �
��]�� �
�h�Ebc� �
Receive event i (message � received
with timestamp st��� ���$]�� �Z���Ebr� �1u)

]'� ��� / �gjEk) ^ �O�'� � *]�� ���l���	� �
�$��� � *]'� �-������� �W+� �U�L�m
U�v�Upq
U���Lbc� �\d ��ew� /
��jEk) ^ ���Ebc� �\d � * ����� �P���'� �'e=�h�Lbc� �ld � * ����� ���Z�'� ��ex+

�Lbc� �\d ^ ec� / �Lbc� �\d ^ e * �
�'� �%� / ���	� �
�'� i �$]�� i ���Ebr� i � / �'� �
�$]'� �
���Lbc� �

Figure 1. Logical timestamp program at process �

To compare two logical timestamps, ;y<W@ 5 9 B�D @ 5 9 B	F�G @ 5 9 H
and ;y<W@ 6Lz B�D @X6Ez B{F�G @ 6Lz H , we use the following | 5?}?} relation.

| 5W}?}\~ ;=<W@ 5�9EB�D @ 5�9LB	F�G @ 5�9�H�B ;y<W@ 6Ez B�D @X6Ez B{F�G @ 6Lz Hh� iff

~ <W@ 5�9�[gD @ 5�9EB	F�G @ 5�9 M D @ 5�9 N B	FIG @ 5�9 M D @ 5�9 2 � N B @'@�@ BF�G @ 5�9 M D @ 5�9 2�K [� N B : �
T // lexicographic comparison~ <W@ 6Lz [gD @X6Ez B	F�G @X6Ez M D @ 6Lz
N B{F�G @X6Ez M D @ 6Ez72 � N B @�@'@ BF�G @X6Ez M D @ 6Ez72�K [� N B{F��

Causal delivery program. The causal delivery pro-
gram proposed in [4] is as follows: Whenever a process,
say : , receives a message � , : buffers the message until� 5 | D��?G � ~ � B : � Y ~ <?>A@ :ZY-<W@ � [�D @ � [���[K � is satisfied.
As soon as the

� 5 | D��?G � ~ � B : � is satisfied, the message is
delivered. If two or more messages satisfy the delivery
condition simultaneously then process : uses the | 5W}?} re-
lation to determine the causal relation among the messages
and delivers them accordingly. We refer the reader to [4]
for the correctness of these programs.

2

3 Approximate Causal Delivery

The algorithm presented in Section 2 uses the delivery
condition

� 5 | D��?G � ~ � B : � Y ~ <?>A@ :�Y <W@ � [lD @ � [l� [K � to
deliver a message � to process (sensor) : . This condition
is necessary for correctness, i.e., to ensure all messages
are delivered in causal order. Thus, D @ � [_�P[K is the ap-
proximate delay in obtaining causal delivery. We consider
the case where messages are delivered before this delivery
condition is satisfied. Based on this approach for reduc-
ing the delay, we present two algorithms for approximate
causal delivery: (1) deliver after partial wait and (2) check
before delivery.

Deliver After Partial Wait (DAPW). In this algorithm,
we use the following delivery condition:

� 5 | D��?G � ~ � B : � Y~ <?>A@ : Y-<W@ � [D ~yD @ � [��[K �h� , where ��� T D T � � � � .
Thus, D Y � � means that the messages are delivered to the
observer when the clock of observer is at least <W@ � , or as
soon as the message arrives at the observer, whichever is
later. And, D Y � � ��� means that the messages are deliv-
ered in perfect causal order.

Check Before Delivery (CBD). In DAPW, when-
ever a message, say � � is about to be delivered to
process : , if there is a casually related message ���
such that }'5
G � ~ ��� � 273 }
5
G � ~ � � � is true and ���
is scheduled for delivery at a later time than � � then
a causality violation is inevitable. Hence, in the sec-
ond algorithm, whenever message � � is about to be
delivered at process : , : checks the message queue
to determine if there is any message � � such that
| 5W}?}C~ ;=<W@ � � B�D @ � � B	F�G @ � � HAB ;=<W@ � � B�D @ � � B{F�G @ � � H�� is >$<�� 5 .
If there exists such a message ��� then : sets the delivery
time of � � as

� 5 | D��?G � ~ � � B : � Y � 5 | D��?G � ~ ��� B : � . If there
are no such messages then � � is delivered based on the
DAPW algorithm.

4 Simulation Model

Our simulation model consists of G sensors and a base sta-
tion (observer). The sensors communicate with each other.
Every message sent by a sensor is also sent to the base sta-
tion (for visualization). Messages are buffered at the base
station and delivered such that the number of causality vi-
olations is acceptable. We do not assume that the base
station can precisely determine causal relations between
two messages. Now, we show how our simulation model
ensures system properties stated in Section 2.

At each step of simulation, some random sensor chooses
to advance its clock in such a way that

	 �
is not violated.

Whenever a sensor advances its clock, it sends a message

to randomly selected subset of sensors, with a probability
of message rate. And, a message, say � , can remain in
transit for a random duration as long as

	 J is not violated.

5 Simulation Results

We developed an event simulation program in Java. In this
program, we do not associate units for maximum clock
drift (K) and maximum message delay (�). Furthermore,
we find that the ratio
� is important than the individual pa-
rameters. The results presented here are the mean of three
simulations. For a given value of the input parameters, the
percentage of causality violations in different simulations
are similar. The raw data of these simulations is available
at [8].

The number of causality violations at the observer is com-
puted as follows: For each � � , we compute the num-
ber of messages delivered before � � (say, � �) such that}
5
G � ~ � � � 243 }
5
G � ~ � � � . We say that these messages
violate backward causality. Likewise, for each � � , we
compute the number of messages delivered after � � (say,
���) such that }
5
G � ~ ��� � 273 }
5
G � ~ � � � . We say that these
messages violate forward causality. The number of causal-
ity violations is the average of messages that violate back-
ward/forward causality.

To compute these causality violations, we also maintain
vector timestamps [9, 10] in addition to the logical times-
tamps from Section 2. These vector timestamps identify
the actual causal relation among events in the system and
are not used in any way to determine when messages are
delivered.

Now, we present the effect of K , � and message rate on
causal delivery of messages. Unless otherwise specified,
these simulations include

� � sensors and one base station
(observer), and message rate is ��@ � . For different parame-
ters, we refer the reader to [8].

5.1 Effect of Maximum Clock Drift (K)

The effect of K on causal delivery of messages using
DAPW and CBD is shown in Figure 2. The graphs show
the number of causality violations as a function of the per-
centage of delay, D , used in

� 5 | D��?G � . In these experiments,
we use � Y � � .

DAPW. When the ratio
� is larger, the number of
causally dependent messages for a given message � is
large. Hence, there is a higher probability for causality
violations. Therefore, the number of causality violations
increase (cf. Figures 2 (a) and 2 (c)).

3

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

ε = 5
ε = 10
ε = 20
ε = 30

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

ε = 5
ε = 10
ε = 20
ε = 30

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

ε = 5
ε = 10
ε = 20
ε = 30

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

ε = 5
ε = 10
ε = 20
ε = 30

(a) (b) (c) (d)

Figure 2. Effect of
 on (a) DAPW with delay �)��� � � � + , (b) CBD with delay �)��� � � � + , (c) DAPW with delay �)��� � �� + , and (d)
CBD with delay �) � � � � � + . (Scale of DAPW and CBD graphs are different.)

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

δ = 5
δ = 10
δ = 20
δ = 30

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

δ = 5
δ = 10
δ = 20
δ = 30

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

δ = 5
δ = 10
δ = 20
δ = 30

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

δ = 5
δ = 10
δ = 20
δ = 30

(a) (b) (c) (d)

Figure 3. Effect of (on (a) DAPW with delay �) � � � � � + , (b) CBD with delay �) � � � �� + , (c) DAPW delay �) � � � � � + , and (d) CBD
message delay �) � � � � � + . (Scale of DAPW and CBD graphs are different.)

When message delay is determined from the distribution� ~ �� B �� � , 	�
 � of the messages are received within
�
� . By

contrast, with
� ~ �
�
B �� � , 	�
 � of the messages are received

in � . Thus for
� ~ �� B �� � , the probability of causality vio-

lations is less since number of messages that causally de-
pend on a given message is more than that for

� ~ �
�
B �� � (cf.

Figures 2 (a) and 2 (c)).

For small values of
� , there exists a threshold
 such that,
the causality violations increase suddenly when D T�
 .
(For example, in Figure 2(a), for K Y�
 , causality viola-
tions increase when D T � ��� .) When
 Q D T � � � � ,
the delay in delivery captures most of the causal relation
among messages. When this delay is reduced (i.e., D �
),
the messages are delivered faster and, hence, the causal re-
lation among messages is not captured. For larger values
of
� , the observer captures most causally related messages
even when the delay in delivery for less.

CBD. As
� ratio increases, causality violations decrease
(cf. Figures 2(b) and 2(d)), which is exactly opposite to
DAPW. CBD postpones the delivery of � � if the message
queue contains causally preceding messages of � � . Thus,
as
� ratio increases, CBD can detect/prevent most of the
causality violations since the probability that the message

queue contains one or more causally related messages is
high.

Further, we note that the number of causality violations is
less when CBD is used with message delay of

� ~ �� B �� � .
This is due to the fact that there is a high probability that
at least one causally related message for a given message
� will be present in the message queue of the observer
when � is about to be delivered.

Comparison. From Figure 2, we conclude that the num-
ber of causality violations in CBD are an order of magni-
tude less than that in DAPW. For small values of
� , CBD
performs almost similar to DAPW, since the number of
causally related messages is less. However, for large val-
ues of
� , CBD outperforms DAPW.

5.2 Effect of Maximum Message Delay (�)

The effect of � on causal delivery of messages using
DAPW and CBD is shown in Figure 3. In these experi-
ments, we use KPY � � . The results are similar to that in
Section 5.1.

As
� increases, the number of causality violations increase
(cf. Figures 3(a) and 3(c)). Further, in Figure 3 (c), we ob-

4

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

Message rate = 0.5
Message rate = 0.1
Message rate = 0.01

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

Message rate = 0.5
Message rate = 0.1
Message rate = 0.01

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

Message rate = 0.5
Message rate = 0.1
Message rate = 0.01

0

2

4

6

8

10

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

Message rate = 0.5
Message rate = 0.1
Message rate = 0.01

(a) (b) (c) (d)

Figure 4. Effect of message rate on (a) DAPW with delay �) � � � �� + , (b) CBD with delay �)��� � �� + , (c) DAPW with delay
�) � � � � � + , and (d) CBD with delay �) � � � � � + . (Scale of DAPW and CBD graphs are different.)

serve that the number of causality violations is more when
DAPW is used with delay of

� ~ �� B �� � . And, for small val-
ues of
� , there exists a threshold
 such that causality vi-
olations increase suddenly when D T
 . (For example, in
Figure 3 (a), for � Y J � when D T � � � .) Finally, we can
observe that CBD results (cf. Figures 3(b) and 3(d)) are
exactly opposite to DAPW (cf. Figure 3 (a) and 3 (c)).

Remark. We note that when the average message delay
increases, the number of causality violations also increase.
This is due to the fact that most messages arrive late and,
hence, the message queue does not have sufficient infor-
mation to prevent increased causality violations.

5.3 Effect of Message Rate

The effect of message rate on causal delivery of messages
using DAPW and CBD is shown in Figure 4. In these
experiments, we use K�Y � Y � � .

As the message rate increases, more causally dependent
messages for a message � are present in the system.
Hence, the number of causality violations in CBD is sig-
nificantly less than that in DAPW.

With message delay of
� ~ �� B �� � , the number of causality

violations in CBD is in the order of � � 2 J � (cf. Figure
4 (d)). This is due to the fact most messages arrive within�
� , and, hence, CBD has more information in the queue to
detect/prevent causality violations.

Further, for small values of message rate, causality viola-
tions in DAPW and CBD are nearly equal. This is due to
the fact that at low message rates, CBD has very limited
information to exploit among the messages in the queue.

5.4 Physical Clocks Vs. Partial Timestamps

In this section, we argue that the information maintained
in CBD, although small, is important in reducing the num-
ber of causality violations. Towards this end, we compute
the causality violations for the case where only physical
clock is used to determine when a message should be de-
livered. To obtain an implementation that uses physical
clock alone, we set the D value and all elements in F�G to
� . We call this algorithm DPC1. We also consider the al-
gorithm DPC2 where the D value is used but F�G values are
reset to � . Other points on this continuum can be obtained
by maintaining a subset of the F�G values in the timestamp.

Notation. In this section, by “ J F�G @ 5 elements” we mean
that the simulation uses F�G @ 5'9 M D @ 5�9 N and FIG @ 5�9 M D @ 5�9 2 � N ele-
ments instead of the FIG @ 5'9 array for an event 5�9 . Similarly,
by “ F F�G @ 5 elements” we mean that the simulation uses the
first F FIG @ 5 elements.

Figure 5 shows the simulation results for K7Y � Y � � , mes-
sage rate Y ��@ � and

� � sensors. (We refer the reader to [8]
for results with different parameters.)

0

10

20

30

40

50

60

70

80

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

DPC1
DPC2

2 kn.e elements
4 kn.e elements
6 kn.e elements

CBD

0

20

40

60

80

100

020406080100

%
 o

f c
au

sa
lit

y
vi

ol
at

io
ns

% of delay used in delcond

DPC1
DPC2

2 kn.e elements
4 kn.e elements
6 kn.e elements

CBD

(a) (b)

Figure 5. Effect of using partial timestamps on
(a) CBD with delay �) � � � � � + , (b) CBD with delay
�) � � � � � + .

From Figure 5, we observe that using physical clocks

5

alone for causal delivery of messages is not enough.
Specifically, even when D Y � � � � , DPC1 and DPC2 have
around � ��� 2
 ��� of causality violations. And, main-
taining just J F�G @ 5 elements provides a significant reduc-
tion in number of causality violations (

� �!2 �
 �). More-
over, if we increase the number of FIG @ 5 elements in the
timestamp, the causality violations can be further reduced.
Maintaining just

� F�G @ 5 elements gives the same result
as CBD. Thus, the timestamp provides a continuum in
which the application developer can choose the size of the
timestamps based on the requirements. This result is espe-
cially important in sensor networks. Specifically, in MICA
motes [2], the payload size is just J 	 bytes. Hence, the
overhead in achieving approximate causal delivery should
be small. Depending on the percentage of causality vio-
lations sensors can handle and the overhead involved, the
developer can choose an appropriate size for the times-
tamp. For example, choosing J F�G @ 5 elements (i.e., � bytes
including <?>A@ : and D @ :) will result in

� �g2 �
 � causality
violations (as opposed to � � 2
 ��� causality violations
when using the physical clocks alone).

6 Conclusion

In this paper, we presented a solution for approximate
causal delivery. We discussed the effect of the parame-
ters such as maximum clock drift, maximum message de-
lay, and message rate on causal delivery of messages. We
showed that by using physical clocks alone, the number of
causality violations increase significantly. By adding new
variables to the timestamp, the number of causality viola-
tions can be reduced. In other words, we showed that our
solution provides a continuum such that the application de-
veloper can choose the size of timestamps used in the sys-
tem based on the number of causality violations the appli-
cation can tolerate. This result is especially useful in sen-
sor networks, since the sensors are resource constrained
and the size of the payload in a message is very limited
(e.g., J 	 bytes in MICA). From Section 5.4, we note that
maintaining just J F�G @ 5 elements (i.e., � bytes) provides
a significant reduction in causality violations (

� �%2 �
 �)
compared to using physical clocks alone (� �S2
 � �).
Hence, causal delivery of messages at the base station can
be achieved easily in sensor networks with a small mes-
sage overhead. To our knowledge, this result is the first of
its kind for providing approximate causal delivery in sen-
sor networks. Moreover, DAPW and CBD preserve the
self-stabilization [11] property of the algorithm in [4], i.e.,
starting from arbitrary initial states, the system recovers to
states from where causal delivery is achieved. Hence, if
the sensors are corrupted, our algorithm ensures that even-
tually approximate causal delivery is restored.

References

[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for network sen-
sors. In Proceedings of the International Conference on
Architectural Suppport for Programming Languages and
Operating Systems (ASPLOS), November 2000.

[2] J. Hill and D. E. Culler. Mica: A wirleess platform for
deeply embedded networks. IEEE Micro, 22(6):12–24,
2002.

[3] M. Demirbas, A. Arora, and M. G. Gouda. A pursuer-
evader game for sensor networks. In Proceedings of
the Sixth Symposium on Self-Stabilizing Systems (SSS),
Springer, LNCS: 2704:1–16, June 2003.

[4] S. S. Kulkarni and Ravikant. Stabilizing causal deter-
ministic merge. In Proceedings of the Fifth Interna-
tional Workshop on Self-Stabilizing Systems, Springer,
LNCS:2194:183–199, October 2001.

[5] M. J. Fischer, N. A. Lynch, and M. S. Peterson. Impos-
sibility of distributed consensus with one faulty processor.
Journal of the ACM, 32(2):374–382, 1985.

[6] T. Herman. NestArch: Prototype time synchronization
service. NEST Challenge Architecture. Available at:
http://www.ai.mit.edu/people/sombrero/
nestwiki/index/ComponentTimeSync, January
2003.

[7] L. Lamport. Time, clocks, and the ordering of events
in a disributed system. Communications of the ACM,
21(7):558–565, July 1978.

[8] Simulation results and raw-data for approximate causal
delivery. Available at: http://www.cse.msu.edu/
˜arumugam/research/results/approxcd.

[9] J. Fidge. Timestamps in message-passing systems that pre-
serve the partial ordering. Proceedings of the 11th Aus-
tralian Computer Science Conference, 10(1):56–66, Feb
1988.

[10] F. Mattern. Virtual time and global states of distributed
systems. Parallel and Distributed Algorithms, pages 215–
226, 1989.

[11] E. W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM, 17(11),
1974.

6

