
Composing Distributed Fault-tolerance Components �

Sandeep S. Kulkarni Karun N. Biyani Umamaheswaran Arumugam
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824 USA

Abstract— In this paper, we show how a distributed fault-
tolerance component can be replaced dynamically. The need for
such replacement arises due to the fact that there are often several
fault-tolerance components that are suitable for adding fault-
tolerance to a fault, and the choice of the component depends
upon the environment. Since a distributed fault-tolerance com-
ponent has a fraction installed at every process, replacing such
a component requires that the replacement be done consistently.
More specifically, it requires that the dependency among the
fractions of the component be handled so that a component
fraction is not removed while other component fractions or
the underlying application depends on it. We show how the
dependency relation among component fractions is correctly
handled while ensuring that the component replacement is
transparent to the application. As an illustration of different types
of dependency relations, we present a message communication
example and show how dynamic composition is performed in it.
Finally, in our approach, it is also possible to deal with faults
that occur during dynamic composition.

I. INTRODUCTION

Modern distributed systems are often subjected to changing
user capabilities, faults, and security threats. Hence, these
systems need to be adaptive so that they can change their
execution for providing optimum performance based on the
changing conditions. For example, if the environment reduces
the ability of a process to communicate with other processes
in a system, e.g., by causing congestion or network failure,
the system may need to decrease the communication-intensive
part and increase the computing-intensive part. Or, the system
may need to change the way of enforcing security based on
the threat level.

In this paper, we focus on fault-tolerant systems that adapt
to varying environment conditions and the types of faults
encountered. A fault-tolerant system needs to deal with its
functionality and fault-tolerance. In [1], Arora and Kulkarni
have shown that these two concerns can be separated. More
specifically, they have shown that a fault-tolerant application
can be decomposed into a fault-intolerant application that deals
with functionality (in absence of faults) and a set of fault-
tolerance components (called detectors and correctors) that
deal with fault-tolerance.

In [1], the authors have also shown that if a fault-tolerant
system can be designed by reusing the existing fault-intolerant

1Email: {sandeep,biyanika,arumugam}@cse.msu.edu
Tel: +1-517-355-2387
This work was partially sponsored by NSF CAREER CCR-0092724,
DARPA Grant OSURS01-C-1901, ONR Grant N00014-01-1-0744,
and a grant from Michigan State University.

system, then it is possible to design a fault-tolerant system by
adding detectors and correctors to the existing fault-intolerant
system. However, the choice of the fault-tolerance components
(detectors and correctors) used in this composition is not
unique. In other words, several fault-tolerance components
suffice for providing the required fault-tolerance. Moreover,
the performance obtained by using one fault-tolerance com-
ponent is different from the performance obtained by using
another fault-tolerance component. Also, the performance of
a fault-tolerance component varies with the environment con-
ditions it is subject to. Therefore, to adapt to the changing
environment conditions and application requirements, we need
to dynamically replace the fault-tolerance component(s) used
for providing fault-tolerance.

Dynamic replacement of a fault-tolerance component in a
distributed system is further complicated by the fact that the
component itself is distributed. In other words, a distributed
component consists of component fractions and one compo-
nent fraction is installed at each process in the system. The
application process may depend on the component fraction
installed at that process and the component fractions may
depend on each other. (See Section IV for a detailed example
of such dependency.) Thus, if a component fraction is removed
while other component fractions or the application process
where it is installed depend on it then the result will be
unpredictable. Hence, we need to ensure that the dependency
among the component fractions and the dependency between
a component fraction and the process where it is installed are
correctly handled.

In addition to the dependency among component fractions
and the fault-intolerant application, we also need to ensure that
the component replacement is transparent to the application.
One implication of this transparency is that the addition, re-
moval or replacement of a component should be atomic, i.e., as
far as the application is concerned, the component replacement
should appear indivisible. Secondly, the application should
continue to execute during the component replacement or
any blocking introduced should be minimal (i.e., only when
necessary for correctness). In other words, the component
replacement should be minimally blocking. Finally, component
fractions of two different components should not interact as
their interaction could lead to an unpredictable result. In other
words, the component replacement should be synchronized.

Contributions of the paper. With the above motivation,
in this paper, we present an approach for providing the

ability to replace distributed fault-tolerance components while
ensuring atomicity, minimal blocking and synchronization. Our
approach is based on the use of distributed reset [2], [3] to
ensure that these three properties are satisfied and that the
dependency among the component fractions and the intolerant
application are correctly handled. Also, our approach has the
ability to tolerate faults that occur during the component
replacement.

Organization of the paper. The rest of the paper is organized
as follows: In Section II, we briefly discuss the architecture
of the framework used for dynamic composition. We describe
the properties of the reset protocol from [2], [3] in Section
III. In Section IV, we identify different types of dependency
relations for a distributed component. In Section V, we present
how the reset protocol is used in our framework to provide
dynamic composition of distributed components. We present
an example where our framework is used in Section VI. The
Java implementation of the example is discussed in Appendix.
We describe some of the issues raised by our framework in
Section VII. Finally, we describe the related work in Section
VIII and conclude in Section IX.

II. FRAMEWORK ARCHITECTURE

To provide the context and broad picture where our work
on dynamic composition is used, in this section, we describe
the architecture of our framework and briefly explain each
of its modules. Our framework provides fault-tolerance to
an intolerant application by composing it with fault-tolerance
components. The composition of fault-tolerance components
with an intolerant application can be asynchronous, syn-
chronous or mixed.

In an asynchronous composition, the execution of the fault-
tolerance component is not synchronous with the execution of
the intolerant application. Typical examples of fault-tolerance
components that require asynchronous composition are com-
ponents that do the backup of a system, components involved
in monitoring environment conditions, etc.

In a synchronous composition, the fault-tolerance com-
ponent is executed synchronously with the intolerant appli-
cation, i.e., when the intolerant application executes some
portion of its code, the fault-tolerance component executes
the corresponding portion of its code. We choose method-level
synchronization for synchronous composition. In method-level
synchronization, the fault-tolerance component executes its
method when a certain method of the intolerant application
is executed. The proactive component (cf. Section VI) is an
example of a component that uses synchronous composition.
In this example, the decoding and encoding actions of the
proactive component executes synchronously with the send
and receive actions of the intolerant application.

Finally, in a mixed composition some piece of code is
executed synchronously and some piece of code is executed
asynchronously. The reactive component (cf. Section VI) is
an example of a component that uses mixed composition.
In this example, the send and receive actions of the reactive
component executes synchronously with the send and receive

Fraction
Component

Fraction

Intolerant Distributed Application

Fault-tolerance Component

Component Framework

Component

Application
Process

Application
Process

Application
Process

Framework
Node

Framework
Node

Framework
Node

Component
Fraction

Fig. 1. A Distributed Application Composed With Our Framework

actions of the intolerant application; and the processing of
negative acknowledgments is executed asynchronously with
the intolerant application.

To use our framework, the developer of a fault-tolerance
component specifies the methods that are executed syn-
chronously and the methods that are executed asynchronously.
The developer of an intolerant application provides guidelines
as to what methods of the intolerant application can be
executed synchronously with a fault-tolerance component. The
developer of the intolerant application may specify individual
methods that may be considered for synchronous composition
or allow all methods of a certain type (e.g., methods from
some class or all public methods) to be synchronized. During
composition, the information provided by the developer of
the fault-tolerance component and the information provided
by the developer of the intolerant application is matched to
determine how they should be composed. At runtime, the
methods exposed by the intolerant application are trapped to
deal with synchronous composition. The part of the fault-
tolerance component executed asynchronously is run as a
separate thread.

We instantiate a framework node at each process in the
application (cf. Figure 1). Each framework node consists of a
component manager, an adaptation module and a reset module
(cf. Figure 2). The component manager performs the addi-
tion, removal and replacement of fault-tolerance component
fractions. The adaptation module selects the fault-tolerance
component based on the environment conditions. In the current
implementation, we have the adaptation module at only one
node. The reset module ensures that the addition, removal
and replacement of fault-tolerance components is atomic, min-
imally blocking and synchronized. The framework interacts
with the intolerant application and the component library. The
component library contains detectors and correctors.

Since the main goal of the paper, dynamic addition, removal
and replacement of fault-tolerance components, is mostly
handled by the reset module, we focus on the reset module in
the rest of the paper. We refer the reader to [4] for detailed

Fault-tolerance Framework

Function trap & callback contract

contract

External

Interface

Component
Manager

Adaptation

Module
Reset

Module

Intolerant Application
Process

Fault-tolerance

Component (Library)

Fig. 2. Architecture of the Framework Node

description of the remaining modules. The format in which the
developer of intolerant application specifies exposed methods,
the format in which the component developer specifies its
requirements, and how they are matched is discussed briefly
in Appendix.

Notation. In the rest of the paper, unless specified otherwise,
we will use the term component to mean a fault-tolerance
component and the term application to mean a fault-intolerant
application.

III. DISTRIBUTED RESET PROTOCOL

In this section, we briefly summarize the reset subsystem
of [2], [3] that we use for dynamic addition of distributed
components. The reset subsystem can be embedded in an
arbitrary distributed system to allow processes to reset the
system to a given global state. In the model described in [2],
[3], each process consists of an application module and a reset
module. The application module at any process may begin the
reset operation. The function of a reset module is to (1) reset
the state of the application to a state that is reachable from
the given global state, and (2) inform the application module
when the reset operation is complete.

Each reset operation satisfies the following two properties:
(1) Every reset operation is non-premature, i.e., if the reset
operation completes, then all processes have been reset and the
program state is reachable from the given global state, and (2)
Every reset operation eventually completes, i.e., if an applica-
tion module at a process initiates a reset operation, eventually
the reset module at that process informs the application module
that the reset operation is complete. The reset solutions in [2],
[3] allow the program computation to proceed concurrently
with the reset, to any extent that does not interfere with the
correctness of the reset.

To simplify the reset operation, the algorithms in [2], [3]
maintain a rooted spanning tree of all non-failed processes.
It uses this spanning tree to perform a diffusing computation
[5] in which each process resets its state. The diffusing
computation begins at the root of the spanning tree. The root

of the tree resets the state of its local application module and
initiates a reset wave that propagates along the tree towards the
leaves; whenever the reset wave reaches a process, the process
resets the state of its local application module and propagates
the reset wave to its children. After the reset wave reaches a
leaf, it is reflected as a completion wave towards the root. A
process propagates the completion wave to its parent when it
receives the completion wave from all its children. The reset
is complete when the root receives the completion wave from
all its children.

Regarding fault-tolerance, the algorithm in [2] provides sta-
bilizing fault-tolerance to process/channel failures/repairs and
transient faults, i.e., starting from an arbitrary state, eventually
the program in [2] reaches a state from where future reset
operations satisfy non-prematurity and eventual completion.
In addition to this stabilizing tolerance, the algorithm in [3]
ensures that if only process/channel failures/repairs occur then
every reset operation satisfies non-prematurity and eventual
completion.

IV. SAFE STATES AND COMPONENT DEPENDENCY

In this section, we describe how the dependency relation
among component fractions of a distributed component affects
their addition and removal.

Safe states of a component. A component fraction of a
distributed component cannot be removed arbitrarily as other
component fractions or the local application process may
depend on it. For example, if component fraction � requires
a response from � to continue then removal of � can lead
to incorrect functioning, e.g., deadlock, of � . Likewise, the
application process where � is installed may be dependent on� . To deal with these problems, we introduce the notion of a
safe state. The safe state of a component fraction is further
classified as a global safe state and a local safe state. A
component fraction is in a global safe state if (1) no other
component fraction depends on it, and (2) the application
process where that component fraction is installed does not
depend on it. Thus, if a component fraction is in a global safe
state, then it is safe to remove it, as its removal will not affect
any other component fractions or the application. A component
fraction is in a local safe state, if the application can be blocked
safely at the process where the component fraction is installed.
When a component fraction is in a local safe state, other
component fractions may depend on it. However, in a local
safe state, the application process at the component fraction
does not depend upon the current state of the component
fraction. Hence, the application process can be blocked (from
communicating with other processes) until the new component
fraction is added at that process. We assume that periodically
the component fraction at each process will be in a local safe
state.

To identify local safe states and global safe states, each
component fraction provides a function, checkState, whose
return value is safetoremove (global safe state), safetoblock
(local safe state) or unsafetoremove. The return value of the
checkState function at the component fraction � is determined

based on the current state of � and on the state information of
the other component fractions received by � in the past. When
a component fraction is in local safe state or global safe state,
the information is propagated to other component fractions.
This information can, in turn, allow those component fractions
to enter local/global safe states. We explain, in Section V-A,
how the reset module uses the checkState function during reset.

Dependency relation for a component. Now, we discuss dif-
ferent types of dependency relations that exist for a distributed
component and how we deal with those dependency relations.
For this discussion, we say that � depends on � if there exists
a state where removal of � causes incorrect functioning of � .

1) No dependency. This is the simplest case. In this case,
there exists no dependency among component fractions
and they can be removed independently. Hence, all the
component fractions will (eventually) return safetore-
move when checkState is invoked.

2) Acyclic dependency for removal. As the name sug-
gests, this case deals with the situation where the de-
pendency relation among component fractions is acyclic.
It follows that there is at least one component fraction
such that no other component fraction depends on it.
This fraction can now be removed as checkState for this
fraction will return safetoremove. The removal of this
component fraction will, in turn, enable the removal of
other component fractions, and so on.

3) Acyclic dependency with blocking. Consider a case
where we have two component fractions � and � that
are mutually dependent. In other words, � (respectively,

�) cannot be removed while � (respectively, �) is still
running. Further, assume that the application at � can be
blocked and the knowledge that the application at � is
blocked enables the removal of � . Now, we could remove
the fractions � and � as follows: block application
at � , remove � and remove � . In this case, initially,
when checkState is invoked at � (respectively, y), it will
return safetoblock (respectively, unsafetoremove). Later,
at some point after � is blocked, checkState at � will
return safetoremove and subsequently, checkState will
return safetoremove at � . More generally, after introduc-
ing the notion of blocking, if the dependency relation
among component fractions becomes acyclic, then the
corresponding component fractions can be removed as
in case 2.

4) Cyclic dependency. Here the component fractions
exhibit mutual dependency even after introducing block-
ing. Hence, they cannot be removed using any of the
three cases discussed above. Possible ways to deal with
such dependency are as follows:

- It is likely that the mutual dependency among
component fractions does not exist during all the
time while the application is running. There may
be instances during run-time, when the component
fractions do not depend on each other. Hence, we
can add/remove component fractions during those

instances.
- Another approach could be to ignore the depen-

dency relation. Although, this approach may fail in
general, if the new component is stabilizing fault-
tolerant [6] then it will eventually reach a state
from where it will work correctly. This approach
is presented in [7].

V. RESET-BASED COMPOSITION OF DISTRIBUTED

COMPONENTS

In this section, we first identify the requirements during dy-
namic addition of distributed components. These requirements
also apply during removal and replacement of distributed
components. Then, in Section V-A, we show how the reset
module in our framework meets these requirements. Finally,
in Section V-B, we show how faults that occur during addition,
removal and replacement are handled.
Atomicity. When a distributed component is added to an
application, we need to ensure atomicity of such integration,
i.e., all fractions of the distributed component should be
installed across the processes of the application or none should
be installed. In other words, if an initiating process adds its
component fraction, then all other processes should add their
component fraction as well.
Minimal blocking. Another challenge is that during the
addition of a distributed component, the application should
not be blocked. While it is desirable that the addition of
a distributed component be entirely non-blocking, it is not
always possible to do so due to dependency among component
fractions. We, therefore, require that the blocking introduced
during the addition be minimal, i.e., blocking should be
introduced only when it is necessary to deal with component
dependency.
Synchronization. All processes involved in the addition of
components cannot add the component fraction at the same
time. Hence, we will have a situation where some processes
have added the component fraction, while some have yet to
add. If a process that has added a component fraction interacts
with another that has not then the results can be unpredictable.
Therefore, we must ensure that interactions do not cross
a composition-boundary, i.e., a process that has added a
component fraction does not interact with another process that
has not added the corresponding component fraction.

A. Using Distributed Reset for Component Replacement

In this section, we discuss replacement of a distributed compo-
nent; addition and removal being special cases of replacement.
For this discussion, assume that the adaptation module at
a process, say

�
, has decided to replace the distributed

component. We call
�

the initiator.
To replace the component, the component manager at

�

generates a magic number for the instance of the new compo-
nent. The magic number is generated by using the initiator ID,
the current time at the initiator, and is used to uniquely identify
the instance of the new component. The component manager
appends the magic number of the component that the applica-
tion is using in the message header while communicating with

component managers at other processes of the application. The
component manager at

�
uses the reset module for changing

the distributed component.

Overview of steps in dynamic component replacement. The
dynamic component replacement is achieved by two waves: an
initialization wave and a replacement wave. The replacement
wave consists of two sub-waves, namely, a transition wave
and a completion wave. The reset module at

�
initiates the

component replacement by sending the initialization wave. In
the initialization wave, all processes change to the transit state
and initialize the component fraction of the new distributed
component. Thus, in the transit state, a process has initialized
the new component fraction, although it is still using the
old component fraction. Upon successful completion of the
initialization wave, the reset module at

�
starts the replace-

ment wave. The replacement wave begins with transition wave
from initiator (root) towards leaves. Each process receiving
the transition wave invokes the checkState function of the
component fraction to determine the state of the component
fraction. During the transition wave, the processes remove the
old component fraction and add the new component fraction
depending on the state information returned by the function.
After a leaf process has completed the replacement of its
component fraction, the transition wave is reflected as the
completion wave to its parent. Further, if a non-leaf process
has completed the replacement of its component fraction and
it has received the completion wave from all of its children, it
propagates the completion wave to its parent. The completion
wave eventually reaches the initiator

�
. We now explain the

reset waves in detail.
Initialization wave. The reset module at

�
initializes the

reset by sending an initialization wave to all its neighbors. In
this wave, the reset module at

�
communicates information

such as the name of the component, the magic number of
the component, and the location of the server where the
components are available to the reset modules of its neighbors.
Each process that receives the initialization wave performs the
following tasks:

1. It sets its parent to the first process from which it
received the initialization wave, and propagates the
initialization wave to all its neighbors except its parent.

2. If a process receives the initialization wave again it
informs the sender the identity of its parent.

3. If the process that receives the initialization wave is a
leaf, it initializes the new component and sets itself into
the transit state, where it is still using the old component
while waiting to use the new component. If the process
fails to initialize the new component (e.g., if it lacks the
required resources), it sets itself into the error state. The
process then communicates its state information (transit
or error) to its parent.

4. When a process has received the transit state information
from all its children, it sets itself into the transit state by
initializing the new component. If it receives the error
state information from any of its children or if it fails
to initialize the new component fraction, it sends the

error state information to its parent. Eventually, the root
process receives the state information (transit or error)
from its children. If it receives the error state information
from any of its children, it can restart the initialization
wave or abandon the component replacement based on
the threshold value set for the number of initialization
waves that can be initiated. If the component replace-
ment is abandoned, other processes are informed about
this so that they can return to the normal state. If the
root process receives the transit state information from
all its children, it initializes the new component and sets
itself into the transit state.

Transition wave. At the successful completion of the ini-
tialization wave, the initiator

�
sends a transition wave to all

its neighbors. When a process receives the transition wave, it
performs following tasks:

1) It propagates this wave to all its children.
2) It invokes the checkState function, which returns one of

the three values: safetoremove, safetoblock or unsafe-
toremove.

a) If the function returns safetoremove, the process
removes the old component, starts using the new
component and sets itself into the normal state.
Further, the magic number for the new component
instance is added in the message header of the
subsequent messages. All the other processes that
participated in the component replacement are now
in the transit state. The component managers at
the processes that are in the transit state contin-
uously check the magic number of the messages
received. If the process has not started using the
new component, all the messages that contain the
new magic number are buffered. Note that, once
an old component is discarded, the component
manager does not need to buffer the messages
and it can forward all the messages to the new
component.

b) If the function returns safetoblock, the component
manager blocks the application process at that
component fraction. After the component frac-
tion receives information about other component
fractions being blocked/removed, eventually, the
function checkState at the blocking process will
return safetoremove. Then, we follow case 2a.

c) If the function returns unsafetoremove, it is peri-
odically invoked till it returns safetoblock or safe-
toremove, in which case we follow the case 2b or
2a respectively. For efficiency, we call checkState
when the application and the component synchro-
nize.

Completion wave. The transition wave is reflected back to
the initiator (root) as a completion wave. The leaf process
sends the completion wave to its parent after it removes the
old component fraction and starts using the new component
fraction. Any non-leaf process, which completes the compo-

nent fraction replacement and receives the completion wave
from all its children, sends the completion wave to its parent.
When the initiator replaces its component fraction and receives
the completion wave from all of its children, the component
replacement is complete.

Claim. The atomicity, minimal blocking and synchronization
properties are satisfied during component replacement if the
component does not exhibit cyclic dependency.

Proof sketch. The component replacement starts with an
initialization wave. If the initialization wave completes unsuc-
cessfully, then none of the component fractions is replaced.
After successful completion of the initialization wave, the reset
module starts a transition wave. The component fractions are
replaced during the transition wave. A completion wave is
propagated towards the initiator when the replacement of the
component fraction is complete. In our approach, the com-
pletion wave is deferred to handle the dependency relations
that exist during the component replacement. As long as the
dependency is not cyclic dependency, both the transition wave
and the completion wave eventually complete ensuring that all
processes replace their component fractions. Thus, component
replacement is atomic.

The component replacement blocks the application only
when the component fraction is being replaced. Once it is
safe to remove a component fraction, it is replaced and the
application is unblocked. Thus, the component replacement
introduces blocking only if it is required to safely replace other
component fractions. It follows that component replacement is
minimally blocking.

During component replacement, old component fractions do
not communicate with new component fractions; such commu-
nication would violate the dependency relation. For example,
if the old component fraction at process � communicates with
the new component fraction at process

�
, it would mean that

the old component fraction at
�

was removed while the old
component fraction at � was still depending on it. Further, if
the new component fraction installed at

�
communicates with

� that is using the old component fraction, the component
manager at � buffers these messages. When the new compo-
nent fraction is added at � , the buffered messages are delivered
to the new component fraction. Thus, component fractions of
different components do not communicate with each other.
Therefore, component replacement is synchronized.

Addition and removal of distributed component. In the
above discussion, we considered the replacement of a dis-
tributed component. The addition and removal are special
cases of replacement. During instantiation of our framework
with the application, our framework traps the functions ex-
posed by the developer of the application and transfers the
control to the default component that simply calls back the
trapped function. Now, for addition of a distributed component,
we remove the default component and replace it with the
new component. In one conservative approach, the checkState
function can be implemented as follows: Initially, all com-
ponent fractions of the default component return safetoblock.

When all the neighbors are blocked, the checkState function
returns safetoremove. For applications where there is two-way
communication between neighbors, this implementation of
checkState ensures minimal blocking. For applications where
there is one-way communication between some neighbors,
minimal blocking can be ensured if checkState at a process re-
turns safetoremove without waiting for the status of processes
that do not communicate with it.

B. Dealing with Faults during Component Replacement

In this section, we discuss the extension of the approach in
Section V-A to deal with faults that occur during addition,
removal or replacement. The algorithm discussed in Section V-
A is a variation of the intolerant version of the programs in [2],
[3]. By treating the algorithm in Section V-A as an intolerant
application and using the fault-tolerance components from [2],
[3], we can (statically) add fault-tolerance to that program.

If we were to add the fault-tolerance component from
[2], the resulting algorithm will ensure that stabilizing fault-
tolerance [6] is provided to faults including process/channel
failures/repairs and transients. Thus, even if these faults oc-
cur, eventually the application will recover to a state from
where subsequent component replacements will be atomic,
minimally blocking and synchronized. If we were to add
the fault-tolerance component from [3], in addition to the
stabilizing fault-tolerance to these faults, the resulting algo-
rithm will provide masking fault-tolerance to process/channel
failures/repairs. Thus, if only process/channel failures/repairs
occur then the component replacement will be always correct.
Moreover, if more general faults such as transients occur then
the algorithm will recover to a state from where subsequent
component replacements will be correct. Since the algorithm
in Section V-A can be used as an input to the framework, it
follows that any fault-tolerance property that can be added to
the reset program can be added to our framework.

VI. CASE STUDY: MESSAGE COMMUNICATION

In this section, we illustrate how we use dynamic component
replacement in the context of a message communication ap-
plication. We have chosen this simple application because it
allows us to demonstrate most of the features including the
availability of multiple distributed fault-tolerance components,
the need for dynamic composition, and dependency among
component fractions. For reasons of space, we only explain
the abstract version of the intolerant application and the
correctors used to provide fault-tolerance in this application.
Then, we explain the dependency relation that exists while
adding or removing the fault-tolerance components used for
this application. We refer the reader to Appendix for Java
implementation of this program and how it is modeled in our
framework.

A. Abstract Version of Message Communication

In the abstract version of the program, each action is repre-
sented in the following form:

�
name � ::

�
guard ����� �

statement �

The guard of an action is a boolean expression over the
program variables. The statement of an action updates zero
or more program variables. An action can be executed only if
its guard evaluates to true. To execute an action, the statement
of that action is executed atomically.
Variables. For simplicity, in this discussion, we assume that
there is only one sender and one receiver. The sender process
generates a message � and sends that message to the receiver
process. The application maintains the following variables for
each message � :
�������	�
�� ��
���
���� (�): the sender will send message � in

future.
��
�������������
�� (�): message � is in transit from the sender to

the receiver.
����������
������ (�): the receiver has received message � .

Actions. The actions of an intolerant message communication
application are as follows:

sender:: �������
�� ��
���
���� (�) � �
�����	�
�� ��
���
���� (�):=false;
�� ����������
�� (�):=true;

receiver::
�� ����������
�� (�) � �

�������������
�� (�):=false; ��������
������ (�):=true;

Invariant. The invariant characterizes the set of all states
from where the intolerant application satisfies its specification.
Initially, ! � "#" �����	�
�� ��
���
����%$ �'& is true. Subsequently,
if �����	�
�� ��
���
����%$ �'& becomes false, then
�� ����������
���$ �(& be-
comes true. If
�������������
���$ �'& becomes false, then ��������
������)$ �'&
becomes true. Thus, an invariant of the intolerant application
is as follows (Note that this invariant is not unique; a stronger
invariant that requires exactly one of these predicates to be
true is also acceptable):

invariant:: ! �*"#" �������
�� ��
���
���� (�) +

�������������
�� (�) + ��������
��,��� (�);

Fault. The fault action, message loss, is represented as:

fault::
�������������
�� (�) � �
�������������
�� (�):=false;

Correctors. Several correctors are available to provide fault-
tolerance to message loss. The correction predicate, the predi-
cate to which the intolerant application should be restored after
the occurrence of faults, of a corrector that provides required
fault-tolerance is: ! �*"-"
�� �,����
.����� (�).

We consider two fault-tolerance components, a proactive
component and a reactive component. The former is based
on the idea of forward error correction (FEC) whereas the
latter is based on the idea of retransmission. Each of these
fault-tolerance components consists of component fractions
that are installed at the sender and the receiver processes of
the intolerant application.
Proactive component. The proactive component sends extra
$0/ � � & parity packets for each group of

�
data packets. If

any data packet gets lost during transmission, the receiver can
generate the lost data packet if it receives at least

�
packets

from a group that contained the lost data packet. Thus, the
actions of the proactive component are as follows (Note that

this corrector is designed for the fault where no more than
(/ � � & packets are lost from each group.):

sender:: ! /21 � " /21 �4365 17/ 3 � "
for each group of

�
data packets

send
�

data packets and $./ � � & parity packets;

receiver:: 8
�� �,����
.��� � (�) 9 at least packets
�

are received from group containing / packets

� � ��������
������ (�):=true;

Reactive component. The component fraction at the receiver
sends a negative acknowledgment for a lost packet. The com-
ponent fraction at the sender retransmits the packet for which
it receives a negative acknowledgment. Thus, the reactive
component detects if
�� �,����
.��� �:$ �'& is false. Subsequently, it
satisfies
���������
.�����;$ �'& by setting �������
�� ��
���
����<$ �'& to true.
The action of the reactive component is as follows:

sender:: 8
���������
.����� (�) � � �������
�� ��
���
���� (�):=true;

B. Dependency Relations

Dependency relation for the proactive component. The
component fraction at the sender process encodes the data
packets so that for each

�
data packets it generates $./ � � &

parity packets. The component fraction at the receiver gener-
ates

�
data packets by decoding the group of / packets. We

notice that there exists acyclic dependency for removal among
these component fractions. More specifically, the component
fraction at the receiver process is dependent on the component
fraction at the sender process. In other words, if the component
fraction at the receiver process is removed before the compo-
nent fraction at the sender process, then the receiver will not
be able to decode the encoded packets that it might still receive
from the sender process. Also, the component fraction at the
sender process cannot be removed while it has processed a
partial group of packets.

Based on the dependency relation, we remove the compo-
nent fraction at the sender before removing the component
fraction at the receiver. Moreover, at the sender, checkState
returns unsafetoremove when a partial group of packets is sent.
When the component fraction at the sender is not in the middle
of a group, the checkState at the sender returns safetoremove.
Finally, the knowledge about the removal of the component
fraction at the sender enables the removal of the component
fraction at the receiver.
Dependency relation for the reactive component. The
component fraction at the receiver sends a negative acknowl-
edgment for a lost packet. The component fraction at the
sender retransmits the packet for which it receives a negative
acknowledgment. Clearly, the component fractions of the
reactive component are mutually dependent. The component
fraction at the receiver process cannot be removed before
the component fraction at the sender process is removed.
Also, the component fraction at the sender process cannot
be removed before the component fraction at the receiver
process, since a negative acknowledgment from the receiver

may be in transit. In this case, the checkState at the sender
returns safetoblock, as the sender process can be blocked
from sending messages. The knowledge about the blocking of
the component fraction at the sender enables the removal of
the component fraction at the receiver. Thus, the dependency
relation of the reactive component falls in the category acyclic
dependency with blocking.

Based on the dependency relation, we first block the appli-
cation process at the sender. While the application process at
the sender is blocked, the component fraction at the sender can
still handle the negative acknowledgments sent by the receiver
and can retransmit any lost packets. Eventually, the receiver
will reach a state where it has recovered all the lost packets. At
this point, the component fraction at the receiver can be safely
removed. Subsequently, the removal of the component fraction
at the receiver will allow the safe removal of the component
fraction at the sender.

VII. DISCUSSION

The framework proposed in this paper raises several questions
about how it can be used and modified to suit different
applications. We discuss some of these questions below.

Who initiates the component change? Can any process initiate
the component change?
Any process can initiate the component change. Although in
Section V-A, we assumed that only one process initiates the
component change, it is possible to extend it so that other
processes can also initiate a component change. Towards this
end, we use the approach in [2] where the processes are
arranged in a tree. In this case, any process that wants to
change a component sends its request to the root. The root
process then initiates the component change as mentioned is
V-A. This approach also takes care of network partitioning
where each partition has its own root process that can perform
the component change for that partition.

Is the reset-initialization wave necessary? What are its advan-
tages and disadvantages?
As discussed in Section V-A, a reset-initialization wave is used
to initialize the components and create a spanning tree. We
note that, the reset-initialization wave is not a requirement
for our framework. If we assume that all processes already
have the component fractions initialized, then we do not need
the reset-initialization wave. If the components are changed
frequently and all processes can always succeed in installing
the new component, then it would be more efficient to remove
the reset-initialization wave. However, if we remove the reset-
initialization wave then the overhead incurred by the compo-
nent manager will increase as it has to check the incoming
messages in all cases to determine if a component change is
in progress. Also in this case, the process will not have an
option to abort the component change. Thus, the decision of
using reset-initialization wave is a tradeoff in performance and
flexibility rather than a requirement.

Can dynamic composition be improved if components being
added are backward compatible with the current component?

Yes. If the new component is backward compatible, then we
can add the new component without dealing with the depen-
dency relation among the component fractions. This is due to
the fact that the new component fraction at a process can in-
teract with the current component fractions at other processes.
Note however that, in general backward compatibility is not
satisfied. Hence, in many situations, the component fractions
of the new component cannot interact with the component
fractions of the current component. It is possible to enhance
the framework presented in the paper to simplify composition
in this special case. We have not considered this issue in this
paper since we are mainly interested in providing dynamic
composition in cases where the new component and the current
component are independently developed, and hence, are not
related.

How can our framework be applied in building secure sys-
tems?
Although, our current discussion and implementation focused
on fault-tolerance components, our approach can be used in
other areas where it is possible to identify independent com-
ponents that need to be dynamically added. The framework
presented in this paper could be used to dynamically add
components that provide authentication and/or privacy. Also,
in [8], it is shown that a security failure is often a result of
number of faults. In such a situation, the dynamic addition
of fault-tolerance components will be useful in satisfying the
required security properties. Moreover, in [9], it is shown that
the theory of detectors and correctors can be applied for adding
fault-tolerance to Byzantine faults and these faults are often
important in context of modeling security threats. Thus, the
framework can be used for satisfying security properties for
applications where malicious users can be modeled as users
suffering from Byzantine faults. In general, we expect that our
framework can be applied if the given security property can
be decomposed into safety and liveness formalism (from [10]).
However, the problem of providing dynamic composition for
more general security properties [11] is still open.

VIII. RELATED WORK

Related work that deals with adaptive fault-tolerant systems
includes [12], [13]. The software-based architecture of [12]
is composed of subsystems and libraries of metaobjects.
Common services required for implementing the metaobjects
are provided by the subsystems. A library of fault-tolerance
strategies consisting of metaobject classes is implemented
on top of the corresponding subsystem. For this reason, the
programmer developing a library needs to be aware of the
underlying subsystem implementation. In [13], Agha et al.
describe a language framework for dependable systems by
focusing on modularity and composition. In [13], the base
objects specify application specific functionality whereas the
meta-level objects specify the fault-tolerance protocols. Our
framework differs from the approaches in [12], [13] in that our
framework deals with the addition and removal of distributed
components by considering the dependency relation among
component fractions in a distributed component.

Gouda and Herman [7] have previously considered the prob-
lem of adding/removing distributed stabilizing fault-tolerance
components. By definition, starting from an arbitrary state,
a stabilizing component recovers to a state from where its
subsequent computation satisfies its specification. Thus, even
if one ignores the dependency relation among component
fractions, after the addition of a new stabilizing fault-tolerance
component, it will recover to a legitimate state. Our framework
differs from the approach of [7] in that in their approach, it
is possible for some incorrect computation to occur during
a component change as they ignore the dependency relation
among component fractions. Moreover, our framework can
also deal with components that are not stabilizing fault-
tolerant.

Chen et al. [14] have presented an adaptation process that
consists of change detection, agreement, and adaptive action.
Our approach of changing components is orthogonal to the
approach in [14]. In [14], either the dependency relation is
ignored or is handled implicitly. This can lead to excessive
blocking or incorrect results during component change. We ex-
plicitly account for any dependency during component change
while ensuring minimal blocking. Secondly, in their approach,
faults that occur during the change are not considered. Our
approach deals with faults that can occur during component
change (cf. Section V-B). Unlike in [14], the reset module
described in the paper deals only with the adaptive action that
replaces the fault-tolerance component. However, the approach
in [14] for change detection and agreement can be combined
with our work to build adaptive component-based distributed
systems. Further, our work on component change can be used
in [14] to ensure that the dependency relation is correctly
handled.

Examples such as ESS (Electronic Switching Systems) [15]
support dynamic addition/removal of components. However, in
these examples, the system consists of a set of applications.
When a new component is added, old applications continue
to run using the old component whereas the new applications
will use the new component. When all the old applications
terminate, the old component can be removed. Thus, we can
view this system as a set of two disjoint systems; one using
the old component and the other using the new component.
By contrast, in our algorithm, there is only one (long-running)
application that needs to change the component dynamically.
Hence, we cannot use a solution where the old and new
components execute concurrently until the applications using
the old component terminate.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for dynamic compo-
sition of distributed fault-tolerance components. The approach
was based on the distributed reset protocol of [2], [3]. Our
approach satisfies the three properties, namely, atomicity, min-
imal blocking and synchronization during component addition,
removal and replacement. Also, it correctly handles the depen-
dency relation of a component during dynamic composition.

Moreover, as discussed in Section V-B, our approach deals
with faults that occur during a dynamic composition.

We used the message communication example (cf. Section
VI) to illustrate the availability of multiple fault-tolerance
components, the need for dynamic composition, and different
dependency relations among component fractions. We have
also illustrated the use of our approach in Siesta, Simple
NEST Application Simulator [16], developed at Vanderbilt
University. In this application, the system consists of 50 nodes.
We developed fault-tolerance routing components for Siesta
and using the approach presented in this paper we showed
how to dynamically change these components. Although, for
reasons of space, we omitted this application in the paper,
we refer the reader to [4] for detailed description of this
application and the corresponding fault-tolerance components.

The approach for dealing with dependency relation among
component fractions of a fault-tolerance component is devel-
oped in the context of general-purpose framework (cf. Section
II). The framework is written in Java language. It permits
the case where multiple fault-tolerance components are used
simultaneously. For example, in the context of the message
communication, we have shown how the proactive component
and the reactive component can be hierarchically composed.
Our framework also enables the reuse of fault-tolerance com-
ponents. The software for the framework is available at:
http://www.cse.msu.edu/˜sandeep/software.

In the example discussed in Section VI, we explained the re-
placement of a proactive component (FEC-based component)
with reactive component (acknowledgment-based component)
and vice-versa. This replacement did not require the transfer
of state information from one component to another. In [4], we
have shown how to dynamically change a tree-correction com-
ponent while preserving state information so that the change
of a tree correction component preserves the information about
the existing tree.

There are several possible extensions to this work. Cur-
rently, we preprocess the source code so that the functions
exposed by the fault-intolerant application are trapped and
each process is composed with the fraction of the default
component (cf. Section V). To increase the applicability of
the framework, we are currently focusing on using the binary
version of the fault-intolerant application.
Acknowledgments. We would like to thank the anonymous
reviewers for their comments and suggestions.

REFERENCES

[1] A. Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of
fault-tolerance components. In International Conference on Distributed
Computing Systems, pages 436–443, 1998.

[2] A. Arora and M. G. Gouda. Distributed reset. IEEE Transactions on
Computers, 43(9):1026–1038, 1994.

[3] Sandeep S. Kulkarni and Anish Arora. Multitolerance in distributed
reset. Chicago Journal of Theoretical Computer Science, 1998.

[4] Karun Biyani. Dynamic composition of distributed components. Mas-
ter’s thesis, Michigan State University, 2003.

[5] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing
computation. Information Processing Letters, 11(1):1–4, 1980.

[6] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11), 1974.

[7] M. G. Gouda and T. Herman. Adaptive programming. IEEE Transac-
tions on Software Engineering, 17:911–921, 1991.

[8] Catherine Meadows. Applying the dependability paradigm to computer
security. In Proceedings of the 1995 New Security Paradigms Workshop.
pub-IEEE, 1996.

[9] S. S. Kulkarni. Component-based design of fault-tolerance. PhD thesis,
Ohio State University, 1999.

[10] B. Alpern and F. B. Schneider. Defining liveness. Information
Processing Letters, 21:181–185, 1985.

[11] Dennis Volpano. Safety versus secrecy. In Static Analysis Symposium,
pages 303–311, 1999.

[12] Jean-Charles Fabre and Tanguy Perennou. FRIENDS: A flexible
architecture for implementing fault tolerant and secure distributed appli-
cations. In European Dependable Computing Conference, pages 3–20,
1996.

[13] G. Agha, S. Frolund, R. Panwar, and D. Sturman. A linguistic framework
for dynamic composition of dependability protocols. In Proceedings of
DCCA-3, pages 197–207, 1993.

[14] W. K. Chen, M. Hiltunen, and R. Schlichting. Constructing adaptive
software in distributed systems. In 21st International Conference on
Distributed Computing Systems, pages 635–643, April 2001.

[15] J. J. Kulzer. Systems reliability: A case study of number 4 ESS. System
Security and Reliability, Infotech State of the Art Report, pages 186–188,
1977.

[16] Akos Ledeczi, Miklos Maroti, and Istvan Bartok. SIESTA - Sim-
ple NEST Application Simulator (Siesta v0.1 r10.31.1). Institute
for Software Integrated Systems, Vanderbilt University, Available
At: http://www.isis.vanderbilt.edu/projects/nest/
downloads.asp, October 2001.

APPENDIX

In this section, we discuss how the message communication
application and the two components are implemented in Java.
The sender process has a function called send and the receiver
process has a function called receive. These functions are
exposed by the intolerant program, i.e., the fault-tolerance
component can trap these functions to provide the required
fault-tolerance. The component manager at the sender process,
which intercepted the send function of the intolerant applica-
tion, invokes the appropriate function of the fault-tolerance
component that is specified by the adaptation module.
Contracts. Now, we discuss the contracts that we have de-
fined for this application. We classify contracts into two types:
one that can be verified formally, and another that cannot be
verified formally. The contract that cannot be verified formally
is represented as a document. One such contract states that
for every call to a send function made by a sender there
should be a corresponding receive call made by a receiver.
The contracts that can be verified formally are represented in
a meta-application-file and a meta-component-file. The meta-
application-file contains the contract between our framework
and the intolerant application whereas the meta-component-file
contains the contract between our framework and the fault-
tolerance component. There is one meta-application-file for
each application process and one meta-component-file for each
component fraction.

A meta-application-file is either supplied by the developer
of the intolerant application or it can be generated auto-
matically from the intolerant application. We are currently
exploring efficient ways of generating this file. The entries in
the meta-application-file for the intolerant application process
(sender) are as follows (The entries for the receiver process
are similar):

sendClass:java.net.DatagramSocket
sendFunction:send
sendNumOfArguments:

�

sendArguments:java.net.DatagramPacket
sendPacketArgumentNumber:

5
...

The meta-application-file specifies the name of the methods
that are exposed by the sender process and other information
related to these methods. In this case, the method exposed by
the sender process is send. The details about this method
such as its class, number of arguments, etc. are stored in the
meta-application-file.

A meta-component-file is associated with each fault-
tolerance component fraction. This file contains entries similar
to a meta-application-file. It has some parameters that are to
be instantiated with appropriate parameters from the meta-
application-file before installing this component and some
parameters that are supplied by the component developer.
The entries in the meta-component-file for the fraction of the
proactive component at the sender process are as follows (The
entries for the fraction at the receiver process and for the
reactive component are similar):
functionName:send
functionClass:java.net.DatagramSocket
functionArguments:java.net.DatagramPacket
componentFunction: fec-send
...

In this particular example, during composition the
functionName is instantiated with send from the meta-
application-file. Similar instantiations are also performed for
other entries. The component uses this file to obtain infor-
mation about the functions of the intolerant application. This
information is provided through appropriate instantiation of
the parameters of the meta-component-file from the meta-
application-file. The meta-component-file also has information
about the component that is used by the framework.

The component manager at the sender process traps the
send function of the sender process and transfers the control
to the fec-send function of the fault-tolerance component.
Similarly, at the receiver process, the component manager
traps the receive function of the receiver process and transfers
the control to the fec-receive function of the fault-tolerance
component. When the control is transferred from the intolerant
application to the component, the component performs the
tasks required by FEC and, if necessary, calls the trapped
function of the intolerant application to perform the actual
send/receive.

The instantiation of parameters of the meta-component-
file is done by manual matching of the meta-application-file
and the meta-component-file. We save the meta-component-
file after it has been instantiated with the application related
parameters from the meta-application-file. Hence, the future
use of the meta-component-file during the new instantiation of
the component would not require any human intervention. We
are exploring heuristics that will allow us to do this matching
automatically with minimal human intervention.

