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Abstract

Reliable dissemination of bulk data is one of the important problems in sensor net-

works. For example, programming or upgrading the software in sensors at run-time

requires reliable dissemination of a new program across the network. In this paper,

we present Infuse, a time division multiple access (TDMA) based reliable data dis-

semination protocol. Infuse takes two input parameters: (i) the choice of the recovery

algorithm (from one of two presented in this paper) to deal with unexpected channel

errors (e.g., message corruption, varying signal strength), and (ii) whether a sensor

should listen only to a subset of its neighbors to reduce the amount of active radio

time. Based on these parameters, we obtain four possible versions of Infuse. We com-

pare the performance of these versions to assist a designer in selecting the appropriate

version based on the network characteristics. Furthermore, we demonstrate Infuse in

the context of network programming.

Keywords: data dissemination, network programming, time division multiple access

(TDMA), implicit acknowledgments, sensor networks

∗Preliminary results appear as a poster in the Conference on Embedded Networked Sensor Systems 2004.
Email: {sandeep, arumugam}@cse.msu.edu. Web: http://www.cse.msu.edu/˜{sandeep, arumugam}.
Tel: +1-517-355-2387; Fax: +1-517-432-1061;
This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant OSURS01-C-1901,

ONR Grant N00014-01-1-0744, NSF Equipment Grant EIA-0130724, a grant from Michigan State University.



1 Introduction

Sensor networks have become popular due to their application in unattended tracking and

detection of undesirable objects, hazard detection, data gathering, environment monitoring,

and so on. Furthermore, due to their low cost and small size, it is easy to deploy them

in large numbers. Reliable dissemination of bulk data is one of the important problems in

such networks. For example, in sensor networks, reprogramming the sensors in place is often

necessary since the sensors are deployed in large numbers and in inaccessible fields. Moreover,

the requirements of a typical sensor network application (e.g., A Line in the Sand [1, 2])

evolve over time and, hence, reprogramming or upgrading the software in the sensors after

deployment is necessary. Especially in the context of reprogramming, the problem of reliable

data dissemination has been studied in two main scenarios: (1) reprogramming of sensors

in a laboratory environment prior to deployment, and (2) reprogramming of sensors in the

field after deployment. In this paper, we focus on the latter scenario.

Challenges in reliable data dissemination. One of the important challenges in reliable

dissemination of bulk data is that the network is multihop in nature. The communication

range of the sensors is limited and, hence, they need to collaborate with each other to forward

the data across the network. As a result, approaches such as XNP [3], where the sensors are

assumed to be within the communication range of the base station, are not suitable.

Another challenge in sensor networks is the nature of message communication. Specifi-

cally, the basic mode of communication in sensor networks is local broadcast with collision. In

other words, when a sensor communicates, it can update the state of its neighboring sensors.

However, if multiple messages are sent to a sensor simultaneously then, due to collision, it

receives none. This can also occur due to the hidden terminal effect, where a given message

may collide at one sensor and be correctly received at other sensors.

To provide reliable message communication, different medium access control (MAC)

protocols are proposed for sensor networks. Collision-avoidance protocol like carrier-sense
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multiple access (CSMA) offers only probabilistic guarantees about message communication.

Most of the existing solutions for multihop data dissemination (e.g., [4–9]) use CSMA and,

hence, rely on other mechanisms such as acknowledgments/negative-acknowledgments, ad-

vertise/request schemes, and/or error correcting codes.

Collision-free MAC protocol like time division multiple access (TDMA) offers determinis-

tic guarantees about message communication and, hence, it is desirable for reliable data dis-

semination. Other collision-free protocols include frequency division multiple access (FDMA)

and code division multiple access (CDMA). FDMA is often used with TDMA where each

sensor knows when to listen to a particular frequency. CDMA requires special hardware for

encoding/decoding messages and, hence, it is not desirable for resource poor sensors.

Contributions of the paper. With this background, in this paper, we propose Infuse,1

a TDMA based data dissemination protocol for sensor networks. Infuse can be used with

any TDMA protocol (e.g., [10–12]). The main contributions of the paper are as follows:

• We present Infuse, a TDMA based reliable data dissemination protocol. Although

TDMA guarantees collision-free communication, in presence of channel errors (e.g.,

message corruption, varying signal strengths), random message losses occur during

dissemination. To deal with this problem, we consider two recovery algorithms based

on the sliding window protocols [13, 14]. Specifically, we extend an instance of the

sliding window protocol from [13] where we use implicit acknowledgments (received by

listening to the transmissions of the successors of a sensor) and messages that provide

acknowledgments for several previous messages.

• We show that the active radio time during dissemination is significantly less than the

latency. We also present a simple heuristic to reduce the active radio time further.

With this approach, a sensor typically receives new messages from only one sensor.

1infuse v.; to cause to be permeated with something (as a principle or quality) that alters usually for the
better 〈infuse the team with confidence〉. Source: Merriam-Webster Online, http://www.m-w.com/.
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Moreover, we show that the active radio time during dissemination is significantly less

than that of the approaches proposed in [7, 9].

• We verify that Infuse propagates data in a pipelined fashion. Also, we show that Infuse

does not have the behavior expressed in Deluge [7], where sensors along the edge of

the network receive the data first before the diagonal. We also implement Infuse in

TinyOS [15] for Mica-2 [16] and XSM [17] mote platforms.

Organization of the paper. In Section 2, we present the protocol and in Section 3, we

discuss its properties. Then, in Section 4, we present the simulation results. In Section 5,

we compare Infuse with other solutions. Subsequently, in Section 6, we show Infuse can be

used in the context of network programming. Finally, in Section 7, we discuss some of the

questions raised by this work and in Section 8, we make concluding remarks.

2 Infuse: Data Dissemination Protocol

In this section, first, we present the protocol architecture of Infuse. We assume that there is a

base station that is responsible for communicating with the outside world. The base station

initiates the bulk data transfer whenever it receives a startDissemination message from the

outside world (e.g., the monitoring/visualization station in the Line in the Sand experiments

[1, 2]). The data is split into fixed size packets called capsules. The startDissemination

message includes the ID of the new data and the number of capsules. Additionally, it

may include the location (in EEPROM) where the sensors should store this data. Note

that Infuse is not concerned with the contents of the data. For example, in difference-

based reprogramming [18], the data is the difference between the old and the new programs.

Moreover, the data could be encrypted (e.g., using link-layer encryption mechanism like

TinySec [19]) to prevent malicious reprogramming or dissemination. Upon receiving the

startDissemination message, the base station sends the startDownload message (that includes
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the ID of the new data, number of capsules, and optionally, the location where the sensors

should store the data) to all its neighbors; these neighbors, in turn, forward it to their

neighbors. Whenever a sensor receives the message, it initializes appropriate data structures

in order to store the new data. Furthermore, it signals the application that a download is in

progress. And, when the sensor receives the complete data, it signals the application that

the download is complete. Figure 1 shows the Infuse protocol architecture.

Input:
1. Type of recovery algorithm
2. Use of selective listening

Communication
for Localization

startDissemination
(dataID, # of capsules)

Localization
service

Neighborhood
information

Application

Dissemination

Communication

Physical

Layer

Layer

Layer

Layer

startDownload
(dataID, # of capsules)

Infuse

TDMA

Physical Layer/Radio

receive(TOS_Msg)

receive(capsule)

Input: algorithm

Application
At base station

enqueue(capsule)

send(TOS_Msg)

startDownloadstartDownload

downloadComplete(dataID)
downloadInProgress(dataID)

At base station At sensors

Figure 1: Infuse protocol architecture

TDMA Service. The dissemination layer relies on a TDMA service (e.g., [10–12]) that

may in turn use a localization service (e.g., [20]). The TDMA service identifies the slots

in which a sensor can transmit and the slots in which it should listen to its neighbors. We

assume that the TDMA service provides a fair share of bandwidth to each sensor. One way

to achieve this is to ensure that between every two slots assigned to a sensor, at least one

slot is assigned to its neighbors. Also, we assume that the slots assigned to the sensors are

periodically revalidated to deal with transient errors and/or clock drift. In Section 2.3, we

recall the TDMA algorithm from [10] as an example that could be used with Infuse.

Ideal scenario. Once the base station sends the startDownload message, in its subsequent

TDMA slots, it sends data messages. Each message contains a capsule, say cl, its sequence

number, say nl, and information for providing recovery (cf. Section 2.1). Whenever a sensor

receives a capsule (say, c), it stores c at the appropriate location and enqueues it in the

TDMA queue; thus, c will be forwarded to additional sensors farther from the base station.
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Infuse takes two (compile time) parameters: (1) the choice of recovery algorithm, and (2)

whether a sensor should listen to only a subset of its neighbors to reduce active radio time

(at the cost of increasing the latency). We describe the role of these parameters, next.

Parameter 1: Recovery algorithm. Although TDMA guarantees collision-freedom,

background noise can cause random message losses. While dealing with these problems, the

padding added to a message should be minimized since the payload size of a message is often

limited (e.g., 29 bytes in Mica motes [16]). Also, the preamble added to a message in the

lower layers of communication stack is high (e.g., 20 bytes in Mica). Hence, unnecessary

communication (in terms of explicit acknowledgments) needs to be avoided.

During dissemination, whenever the successors of a sensor (say, j) forward the capsule

(say, c), j gets an implicit acknowledgment for c. We use this information to recover from lost

capsules. We compare two recovery algorithms based on the sliding window protocols [13,14].

The recovery algorithms use implicit acknowledgments unlike the explicit acknowledgments

used in the traditional sliding window protocols. The first algorithm, Go-back-N (cf. Section

2.1.1), does not add any padding to a message. The second algorithm, selective retransmis-

sion (cf. Section 2.1.2), adds 2b bits to a message, where 2b is the size of the window.

Parameter 2: Selective listening to neighbors. In the context of bulk data dis-

semination, a sensor may receive a message several times, once from each of its neighbors.

To reduce duplicate messages, it is desirable that a sensor listens to only a subset of its

neighbors. However, in this case, the latency may increase since the duplicate messages may

assist in dealing with random message losses. When such selective listening is desired, each

sensor classifies its neighbors as predecessors and successors. Initially, all neighbors are (po-

tential) predecessors as well as (potential) successors. Now, given two neighbors j and k, if k

forwards a majority of new packets before j then j marks k as its predecessor (i.e., removes

k from successor list) and k marks j as its successor (i.e., removes j from predecessor list).

Once a sensor classifies its neighbors, it can choose to listen to 1 or more predecessors (for
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new capsules) and 0 or more successors (for implicit acknowledgments and recovery). (Note

that when selective listening is not desired, all neighbors are treated as potential predecessors

and successors.)

Based on these parameters, we obtain four possible versions of Infuse. Note that the

version is selected at compile time, i.e., all sensors will be running the same version in any

given experiment. In Section 4, we compare these versions to assist a designer in selecting

the appropriate version based on the network characteristics. We describe the details of

these versions, next.

2.1 Recovery Algorithms

In our protocol, each sensor transmits a capsule in its TDMA slot. In order to deal with

channel errors, in this section, we consider two recovery algorithms; these algorithms iden-

tify the capsule a sensor should forward in its TDMA slot. This is unlike CSMA based

dissemination protocols (e.g., Deluge [7], MNP [9]) where extra steps (e.g., mechanism to

reduce concurrent senders, transmitting meta-data about the availability of new data using

advertisements, etc) need to be taken to prevent congestion and reduce collisions. Since

there is no collision with TDMA, there is no need for elaborate control and each sensor can

independently decide what capsule to send in its TDMA slot.

2.1.1 Go-Back-N Based Recovery Algorithm

In this algorithm, a sensor transmits a capsule with sequence number nf iff it has received

all capsules with sequence number smaller or equal to nf . Thus, when a sensor transmits

a capsule with sequence number nf , it provides implicit acknowledgment for all capsules

0, . . . , nf . To provide recovery in presence of channel errors, each sensor maintains (in RAM)

a window of capsules with sequence number nia +1, . . . , nia +2b, where nia is the highest

sequence number for which the sensor has received an implicit acknowledgment from all its
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successors and 2b is the size of the window. Note that some of the window locations may be

empty, if the corresponding capsules are not yet received. When a sensor receives a capsule in

this window, it stores the capsule both in its RAM and EEPROM. Now, a sensor (say, j) will

forward capsule cf (with sequence number nf ) only when all its neighbors have forwarded

capsules with sequence number nf −b or higher (i.e., nia ≥ nf −b). Otherwise, j will start

retransmitting its current window, i.e., it will transmit the capsule with sequence number

nia +1. This creates a back pressure in the network and, hence, the rate of dissemination of

new capsules is reduced during recovery (cf. Figure 2 for the algorithm).

sensor j:
highest acknowledged seqno =min(highest sequence number for which

implicit acknowledgment is received from all successors of j);
next seqno++;
if next seqno > highest acknowledged seqno+ b

// start retransmitting from the start of the current window
next seqno = highest acknowledged seqno + 1;

if the capsule with sequence number next seqno has been received
enqueue it in the TDMA queue;

Figure 2: Implicit acknowledgments and Go-back-N algorithm

As an illustration, consider the data dissemination process shown in Figure 3, where the

window size is 2. In Figure 3(i), sensors transmit capsules 10, 9, 7, 6 in time slots s1, s2, s3, s4,

s1 < s2 < s3 < s4, respectively. In Figure 3(ii), the second sensor forwards capsule 8 in slot

s2+P , where P is the period between successive TDMA slots. This is due to the fact that

the second sensor did not receive implicit acknowledgment for capsule 8 from its successor.

Hence, instead of forwarding capsule 10, it goes back and starts retransmitting from capsule

8. Similarly, in Figure 3(iii), the first sensor forwards capsule 10 instead of 12. Thus, lost

capsules are recovered.

Dealing with failed sensors. In the presence of failed sensors, neighboring sensors will

not get implicit acknowledgments. To deal with this problem, whenever a sensor fails to get

an implicit acknowledgment from its successors after a fixed number of retransmissions, it

declares that neighbor as failed. Now, a sensor will retransmit a capsule only when it does
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Figure 3: Illustration of Go-back-N algorithm on a linear topology

not receive an implicit acknowledgment from its active neighbors.

2.1.2 Selective Retransmission Based Recovery Algorithm

Similar to Go-back-N, in this approach, each sensor maintains a window of 2b capsules, where

b is any integer. However, unlike Go-back-N, a sensor (say j) will transmit the capsule with

sequence number nf even if it has not received some capsules with sequence number smaller

than nf . (This can happen due to channel errors.) Rather, j transmits capsule with sequence

number nf only if it has received all capsules with sequence number 0, . . . , nf−b−1. Also, the

sensor piggybacks acknowledgments for capsules with sequence number nf−b, . . . , nf−1, nf +

1, . . . , nf+b. The piggybacked acknowledgments are used by its predecessors to determine the

highest sequence number for which acknowledgment is not yet received (nunacked) from some

neighbor. To recover from lost capsules, j will forward capsule cf (with sequence number nf )

only if nunacked > (nf−b). Otherwise, j will retransmit the capsule containing the sequence

number nunacked. After retransmission, j will try to forward capsule with sequence number

nf in its next TDMA slot. The intuition behind selective retransmission is that even if a

sensor misses a capsule transmitted by one of its predecessors, it may still receive the capsule

from other neighbors. (This is due to the fact the sensors may have more than one path to

the base station.) Furthermore, the piggybacked acknowledgments update the predecessors

about the missing capsules at the successors. This also allows the predecessors to listen
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infrequently to the implicit acknowledgment of successors. Thus, it can be used to reduce

message communication and active radio time (cf. Figure 4 for the algorithm).

sensor j:
min unacked seqno =min(sequence number for which implicit acknowledgment

is not received by j from some of its successors);
next seqno = smallest sequence number in the window

{min unacked seqno, min unacked seqno+1, . . ., min unacked seqno+2b−1}
for which the corresponding capsule has been received but not yet forwarded;

if min unacked seqno ≤ next seqno −b

// selectively retransmit the capsule with sequence number min unacked seqno
next seqno=min unacked seqno;

enqueue [the capsule with sequence number next seqno along with status flags for
sequence numbers next seqno±x, 1 ≤ x ≤ b] in the TDMA queue;

Figure 4: Implicit acknowledgments and selective retransmission

As an illustration, consider the data dissemination process in Figure 5, where the window

size is 2. Each sensor is shown transmitting c[m|n], where c is the actual capsule forwarded

by the sensor, m and n are the piggybacked acknowledgments for capsules c−1 and c+1

respectively. If m (respectively, n) is c− 1 (respectively, c+1), the predecessors get an

implicit acknowledgment for the corresponding capsule. If m or n is represented as “X”,

it indicates that the sensor is yet to receive that capsule. In Figure 5(i), sensors forward

capsules 10, 9, 7, 6 in time slots s1, s2, s3, s4, s1 < s2 < s3 < s4 respectively. The second

sensor missed capsule 10 due to channel errors and it forwards 9[8|X] in slot s2. Since the

window size is 2 (i.e., b=1), the first sensor cannot forward capsule 11 in slot s1+P , where

P is the period between successive TDMA slots. Hence, the first sensor retransmits capsule

10 (cf. Figure 5(ii)). Similarly, the second sensor forwards capsule 9 in slot s2+P and s2+2P

(cf. Figure 5(ii-iii)). Thus, lost capsules are recovered through selective retransmissions.

Remark. In the presence of failed sensors, the modifications proposed for Go-back-N

algorithm (cf. Section 2.1.1) can be applied for this approach as well. Also, we can make

the recovery algorithms proposed in this section self-stabilizing using the framework for

one-to-many sliding window protocol presented in [13].
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Figure 5: Illustration of selective retransmission based recovery algorithm on a linear topology

2.2 Reducing Energy Further: Use of Preferred Predecessors

As discussed earlier in this section, a sensor (say, j) classifies its neighbors as its predecessors

and successors. Then, j selects one of the predecessors as the preferred predecessor. Note

that the choice of preferred predecessor of one sensor is independent of that of others. This

preferred predecessor is responsible for listening to implicit acknowledgments and recovering

lost capsules at j. Now, whenever j forwards a capsule, it includes its preferred predecessor in

the message. This can be achieved by log(q+1) bits, where q is the number of neighbors that

a sensor has (and the +1 term is for the case where preferred predecessor is not yet chosen).

Since the predecessors listen to the transmissions of their successors (to deal with channel

errors), they learn about the sensors for whom they are the preferred predecessors. Once the

preferred predecessor information is known, a sensor (say, k) will listen to the transmissions of

j only if j’s preferred predecessor is k. Otherwise, k will not listen in the time slots assigned

to j. Thus, during data dissemination, the number of message receptions is reduced by

allowing only the preferred predecessors to recover lost capsules at their successors.

However, if the preferred predecessor of j fails, j cannot recover from lost capsules.

Towards this end, other predecessors will listen to the transmissions of their successors

occasionally. In other words, a sensor (say, l) will listen in the time slots assigned to j with

a small probability, if l is not the preferred predecessor of j. This will allow the successors

to change their preferred predecessors and recover from lost capsules.
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Remark. We note that the number of messages can be reduced even further as follows.

If k is the preferred predecessor of j, k can choose to listen in the time slots assigned to j

with a certain probability. This will allow k to listen to the transmissions of j occasionally.

However, this is sufficient to recover lost capsules at j, since k learns about the lost capsules

at j with the help of the implicit acknowledgments.

2.3 SS-TDMA: Broadcast Algorithm

In this section, we recall (from [10]) the self-stabilizing TDMA (SS-TDMA) service cus-

tomized for broadcast. This service is based on the radio model from [21, 22], where the

authors have evaluated the signal-to-noise ratio (SNR) of a given message based on the dis-

tance between the sending and the receiving (Mica) sensors. Specifically, in [21, 22], the

authors show that up to a certain distance (communication range) the messages are received

with almost certainty. Also, after a certain distance (interference range), the message recep-

tion is close to 0 and SNR is very low and, hence, the message is unlikely to affect any other

communication. They also show that the value of interference range
communication range is approximately

3.2.

The protocol in [10] uses this communication range and interference range to assign

timeslots for sensors arranged in a grid, where the base station is in top-left (north-west)

corner (at location 〈0, 0〉). They assume that for any sensor its neighboring sensors in the grid

are within the communication range and the sensors up to Manhattan distance of y hops are

in the interference range, where y is called the interference ratio. For such a network, they

show that if the sensor located at location 〈i, j〉 transmits at slot i+(y+1)j+c∗((y+1)2+1),

c ≥ 0, then the communication is collision free. Of these, i+(y+1)j is the initial slot for the

sensor whereas ((y +1)2 +1) is the period (P ) between two slots assigned to a sensor. Based

on the results from [21, 22], we use y = 4 in most of the simulations. For dense networks,

where y is larger, we discuss the results in Section 7.
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Note that in [10], the authors also present approaches for initial slot assignment and slot

validation to deal with transient errors and/or clock drift. These issues are not relevant in

this context and, hence, are not discussed here. Furthermore, Infuse does not depend on this

algorithm; we only use this algorithm to illustrate (most of the) simulation results for Infuse,

as the protocol from [10] is applicable in [2]. Other TDMA algorithms (e.g, [11]) can also

be used with Infuse (cf. Section 4.6). The reader need not be familiar with these TDMA

algorithms; it suffices for them to assume that the TDMA algorithm assigns slots in such a

way that a sensor can communicate with its neighbors in a collision-free manner.

3 Infuse: Properties

In this section, first, we discuss how the data is propagated in a pipeline and estimate the

latency in presence of no channel errors. Next, we argue that our approach is energy-efficient.

Pipelining. In Infuse, whenever a sensor receives a capsule, it stores the capsule in

the flash at the appropriate address. Then, it forwards the capsule in the next TDMA slot.

Hence, the capsules are forwarded in a pipeline fashion. If P is the period between successive

TDMA slots, it takes at most d ∗ P time to forward one capsule across the network, where

d is the diameter of the network (= 2(n − 1), in case of n × n grid network). If ctot is the

number of capsules in the data, as a result of pipelining, once the first capsule is forwarded,

the remaining capsules can be forwarded within (ctot−1) ∗ P time. Thus, in the presence of

no channel errors, the time required to disseminate data with ctot capsules is ((ctot−1)+d)∗P .

This provides an analytical estimate for the dissemination latency. For bulk data, ctot � d.

Therefore, dissemination latency is independent of the network size.

Energy-efficiency. In Infuse, the energy spent during dissemination is equal to the sum

of energy spent in (1) idle-listening, (2) message receptions, (3) message transmissions, and

(4) writing to EEPROM or external flash. Since all the sensors are required to write the data

to their external flash, the energy spent in writing to external flash is a constant across the

network. Additionally, in Infuse, each sensor forwards every capsule at least once. Hence, the
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number of message transmissions remains almost a constant across the network. Finally, in

most sensor network platforms (e.g., Mica-2 [16]), the energy spent in idle-listening is equal

to the energy-spent in receiving a message. Therefore, the energy spent during dissemination

is determined by the amount of active radio time.

With TDMA, a sensor remains in active mode only in its TDMA slots (if it needs to send

any capsule) and in the TDMA slots of its neighbors. Hence, in the remaining slots, sensors

can save energy by turning their radio off. Additionally, the use of preferred predecessor

allows a sensor (say, j) to save energy by turning the radio off in the slots allotted to its

successors for whom j is not the preferred predecessor. In case of Mica-2 sensors, the energy

savings from turning the radio off in this manner is substantial, since the energy spent in

the off state is only 3 µW whereas the energy spent in idle listening/message reception

(respectively, message transmission) is 24 mW (respectively, 48 mW) [17]. Also, the Mica-

2 sensors can switch to off (respectively, on or active) state instantaneously (respectively,

in 2.5 ms) [17], whereas the timeslot interval in a typical TDMA algorithm is an order of

magnitude more (e.g., 30 ms in SS-TDMA [10]).

4 Infuse: Results

We simulated Infuse in Prowler [23], a probabilistic wireless network simulator for Mica

motes [16]. The goal of these simulations is to validate the properties from Section 3 and

to evaluate the performance of different versions of Infuse to enable a designer to choose

the appropriate version of Infuse based on the network characteristics. We use one of the

TDMA algorithms from [10] (recalled in Section 2.3). We disseminate data consisting of

1000 capsules (unless specified otherwise) over a 3x3, 5x5, and 10x10 grid networks, where

the base station is located at the top-left/north-west corner (i.e., location 〈0, 0〉).

Simulation model. Based on the discussion from Section 2.3, in our simulations, we

assume that the inter-sensor separation is 10 m, communication range is 10 m, interference
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range is 32 m, interference ratio (i.e., y) used by the TDMA algorithm is 4, and the time

slot interval is 30 ms. These values correspond to our experience in the Line in the Sand

experiment [1, 2].

In the absence of any interference, we have observed that the probability of successful

communication is more than 98% among the neighbors. Since we use TDMA for message

communication, interference from other sensors does not occur. However, random channel

errors can cause the reliability to go down. Hence, we choose a conservative estimate of 95%

link reliability in our simulations.

Infuse parameters. In our simulations, the capsule size is 16 bytes. To deal with failed

sensors, whenever a sensor fails to receive implicit acknowledgment from its successor, it

retransmits 5 times before declaring failure. In case of preferred predecessors, if l is not a

preferred predecessor of j, l will listen to the slots assigned to j with a probability of 20%.

The parameters used in our simulations are listed in Table 1.

Table 1: Simulation parameters
Parameter Value

Network parameters:
Inter-sensor separation 10 m
Link reliability 95%
Communication range 10 m
Interference range 35 m

TDMA parameters:
Interference ratio 4
Time slot (time to transmit one message) 30 ms

Infuse parameters:
Capsule size 16 bytes
Maximum number of retransmissions 5
Probability of listening to successors
by their non-preferred predecessors 20%

Analytical estimate. Now, we compute the analytical estimates for dissemination using a

specific TDMA algorithm [10] on a n×n grid. The estimate for (i) latency is ((ctot−1)+d)∗P ,

where ctot is the number of capsules, d=2(n − 1) is the diameter of the network, and P is

the TDMA period, (ii) active radio time is 1 slot for forwarding the capsule and at most 4

slots for listening to the grid neighbors per capsule, (iii) message transmissions are equal to
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the number of capsules, and (iv) message receptions are 1 reception from the predecessor

and 2 receptions for implicit acknowledgments from 2 sensors farther from the base station

per capsule. We use the analytical estimate to compare the simulation results.

4.1 Pipelining

In this section, we verify the pipelining property of Infuse and show that this result is different

from the dynamic behavior discussed in Deluge [7]. Figure 6(a-b) shows the progress of data

dissemination for a data sequence consisting of 1000 capsules with Go-back-N algorithm.

The window size used in these simulations is 6. At 5% (respectively, 50%) of time taken

to disseminate 1000 capsules, all sensors have received 49-50 capsules (respectively, 502-505

capsules). Thus, the program capsules are transmitted in a pipeline.
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Figure 6: Dissemination progress for data of 1000 capsules with Go-back-N when (a) 5%,
and (b) 50% of the time elapsed, and with selective retransmission when (c) 5%, and (d)
50% of the time elapsed. The radius of the circle at each sensor in the figure is proportional
to the number of capsules received by the corresponding sensor.

The dissemination progress shown in Figure 6(a-b) contradicts the dynamic behavior

presented in Deluge [7]. Specifically, in [7], it has been shown that the data capsules reach

the edge sensors in the network first before reaching the middle of the network. This dy-

namic behavior causes congestion (due to CSMA based MAC) in the middle and, hence,

message communication and latency are increased. However, with Infuse (cf. Figure 6(a-

b)), we observe that all the sensors receive the data capsules at approximately the same

time. And, Figure 6(c-d) shows the dissemination progress with selective retransmission

algorithm. Again, this result shows that the dissemination latency along the edges is similar
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to the latency along the diagonal.

4.2 Performance of the Recovery Algorithms

In this section, we show that (1) due to pipelining, dissemination latency remains almost the

same for different network sizes, (2) active radio time is significantly less than dissemination

latency (and, hence, Infuse is energy-efficient), and (3) latency and active radio time grow

linearly with respect to the data size.

Go-back-N algorithm. Figure 7 shows the results for dissemination with 1000 capsules

for Go-back-N algorithm. With window size = 6, the latency is close to the analytical

estimate (cf. Figure 7(a)). If a sensor (say, j) missed a capsule, its predecessor (say, k) will

retransmit the capsule. Since j could still get the same capsule from its other predecessors or

its successors, unnecessary retransmissions are reduced with window size =6. Furthermore,

the latency and the active radio time remains almost the same for different network sizes.

This result is also expected based on the pipelining property of the proposed protocol (cf.

Section 4.1) and the analytical estimate, as ctot � d. Additionally, when the window size

increases, the sensors have to transmit more messages during recovery, although most of

the retransmissions may not be necessary. As a result, the recovery is too slow and, hence

the latency increases. The same result can also be observed for message transmissions and

receptions.
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Figure 7: Simulation results for disseminating data with 1000 capsules using Go-back-
N algorithm. (a) dissemination latency and active radio time, (b) number of message
transmissions, and (c) number of message receptions
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Selective retransmission algorithm. Figure 8 shows the results for selective retrans-

mission algorithm. Once again, the latency is close to the analytical estimate and remains

almost the same for different network sizes (due to pipelining). If a sensor misses a cap-

sule, its predecessors selectively retransmit the capsule, thereby reducing the number of

retransmissions. Thus, the latency and the active radio time are reduced. Likewise, message

transmissions/receptions are reduced.
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Figure 8: Simulation results for disseminating data with 1000 capsules using selective
retransmission algorithm. (a) dissemination latency and active radio time, (b) number of
message transmissions, and (c) number of message receptions

Latency and active radio time growth functions. Figure 9 shows how latency

and active radio time grow with respect to the data size for both Go-Back-N and selective

retransmission algorithms. As we can observe from the figure, both latency and active radio

time grow linearly with respect to the data size.
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Figure 9: Latency and active radio time growth functions for (a) Go-back-N based recovery
algorithm and (b) selective retransmission based recovery algorithm.
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4.3 Preferred Predecessors

Figure 10 shows the results for dissemination with 1000 capsules. The window size used in

these simulations is 6. As expected, selective retransmission (SR) and selective retransmis-

sion algorithm with preferred predecessors (SR-PP) perform better than Go-back-N algo-

rithm (GBN) and Go-back-N algorithm with preferred predecessors (GBN-PP) respectively

(cf. Figure 10(a)). This is due to the fact SR and SR-PP selectively retransmits lost capsules

unlike GBN and GBN-PP. Moreover, the latency for SR-PP (respectively, GBN-PP) is more

than SR (respectively, GBN).
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Figure 10: Simulation results with preferred predecessors with 1000 capsules, (a) dissemi-
nation latency and (b) active radio time. Note that the scale is different for the two graphs.

For most situations, SR-PP (respectively, GBN-PP) has lower active radio time than

SR (respectively, GBN). Thus, as expected, the use of preferred predecessor enables us to

reduce the active radio time at the cost of increased latency. However, for large networks, the

advantage of GBN-PP is no longer available; this occurs due to excessive retransmissions,

as a sensor receives capsules from only one of its neighbors. By contrast, for GBN, the need

for retransmissions is less, as a sensor receives redundant copies of a capsule. This effect

is not seen while comparing SR and SR-PP, as unlike GBN and GBN-PP, a predecessor

only retransmits the missing capsules and not the whole window. Hence, the effect of lost

capsules in GBN-PP is more severe than that of SR-PP. With SR-PP, as the network size

grows, active radio time reaches closer to that of SR, as the number of retransmissions in

SR-PP is close to that of SR. (This is due to the fact the number of retransmissions by
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the preferred predecessors alone becomes closer to the number of retransmissions by all the

predecessors of a sensor in SR.) Based on this result, we prefer SR and SR-PP compared to

GBN and GBN-PP respectively. However, GBN and GBN-PP are easy to implement and

GBN does not add any overhead to a message.

4.4 Effect of Window Size

In these simulations, data consisting of 100 capsules are propagated across a 5x5 network.

Figure 4.4(a) shows the dissemination latency and active radio time for Go-back-N algorithm.

With window size =2, whenever a sensor (say, k) observes that its successor (say, j) misses

a capsule, it initiates recovery by retransmitting the corresponding capsule. However, j

can still receive the capsule from its other neighbors, as j has multiple paths to the base

station. Hence, in this case, the recovery is initiated too early. Therefore, the latency is

higher for window size = 2. For other values, predecessors allow the successors to recover

from lost capsules through other neighbors. However, from Figure 4.4(a), we observe that

as the window size increases, the latency also increases. This is due to the fact if j misses

a capsule, its predecessor k starts retransmitting the whole window from the lost capsule,

although most of the retransmissions are not necessary. Thus, with Go-back-N, we observe

that the window size should be chosen such that recovery is neither initiated too early nor

too late. In Figure 4.4(a), we note that with window size=4, 6, . . . , 12, the latency remains

almost the same.

Figure 4.4(b) shows the effect of window size on selective retransmission algorithm. In this

figure, we observe that the dissemination latency (and active radio time) remains constant

for window sizes ≥ 6. This is due to the fact that the predecessors selectively retransmit lost

capsules, unlike Go-back-N algorithm. We note that the dissemination latency for window

size = 2, 4 is slightly higher than that of other values. As discussed earlier in Go-back-N,

in this case, if a sensor (say, j) misses a capsule, its predecessor (say, k) retransmits the
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Figure 11: Effect of window size. (a) Go-back-N and (b) selective retransmission
algorithms.

corresponding capsule immediately, although j may receive the same capsule through other

neighbors.

4.5 Effect of Failed Sensors

In these simulations, data consisting of 1000 capsules are propagated across the network. The

window size used in these simulations is 6. The number of failed sensors in these simulations

is 3 and 5 on a 5x5 network, and 3, 5, 10, 20, and 27 on a 10x10 network. Figure 4.5 shows the

effect of failed sensors on Go-back-N (GBN) and selective retransmission (SR) algorithms.

From Figure 4.5, the additional time required for dissemination in presence of failed sensors

is small. When the number of failed sensors increases, this additional time also increases.

This is due to the fact that the pipeline is disrupted when the sensors fail.

With GBN, whenever a sensor observes that its successors miss a capsule, it retransmits

the entire window. In other words, an inherent redundancy is available in GBN, where the

sensor recovers all the successors (and possibly some predecessors) that have missed a capsule

in the current window. However, with SR, in order to reduce the number of retransmissions,

whenever a sensor observers that one of its successors has missed a capsule, it retransmits

only the corresponding capsule. In other words, the level of redundancy is less in SR. Now,

in presence of failed sensors, the number of paths to base station is reduced. Due to the

built in redundancy in GBN, the effect of the reduction in paths in GBN is less severe than
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Figure 12: Effect of failed sensors. (a) Go-back-N and (b) selective retransmission.
* indicates bulk failure of 3 sub-grids of size 3x3.

that in SR (cf. Figure 4.5).

Additionally, we did a simulation, where 3 sub-grids of size 3x3 are randomly selected

as the failed sensors on a 10x10 network. From Figure 4.5, only 1.35 (respectively, 2.38)

additional minutes are required to disseminate the data with GBN (respectively, SR). This

value is close to the latency for dissemination in presence of 3 failed sensors. In other words,

the cumulative effect of failure of nearby sensors shows up as a single disturbance in the

pipeline. Therefore, the additional time required is less than the case where the failures are

random.

Remark. In these simulations, we assumed that the sensors fail before the dissemination

starts. Even if sensors fail during dissemination, the latency increases only by a very small

percentage. Specifically, the latency is less than or equal to the latency in the case where the

sensors have failed up front + the time required to detect the failure of sensors independently.

Based on our simulations, the time required to detect failures is approximately 0.3 minutes.

Thus, the latency in presence of dynamic failures increases only by a small percentage.

4.6 Effect of Other TDMA Algorithms and Topologies

The goal of this section is to illustrate that Infuse could be used with different TDMA

algorithms and with different topologies. In principle, it could be shown by changing one pa-

rameter at a time. We have performed simulations where we change one parameter (TDMA

algorithm used with Infuse or the network topology) at a time and found that the results
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are consistent with the scenario where we change both the parameters. However, for brevity,

we present the results where we used a different TDMA algorithm on a random deployment

of 100 sensors.

We compare the performance of Infuse on a uniform deployment of 100 sensors in a

10x10 grid with a random deployment. For the uniform deployment, we use SS-TDMA [10],

whereas we use the algorithm in [11] for random topology. (We note that the number of

colors used to obtain TDMA schedule in both are approximately the same: 26 for grid

topology and 31 for random topology.) The window size used in both simulations is 6. Table

2 summarizes the results of our simulations.

Table 2: Infuse on a random topology using the TDMA algorithm from [11]
Data size Dissemination latency (in minutes) Active radio time (in minutes)

(in capsules) Random topology Grid topology Random topology Grid topology

Go-back-N (GBN)

50 0.85 0.78 0.14 0.15
100 2.15 1.66 0.31 0.31

Selective retransmission (SR)

50 1.34 0.72 0.36 0.14
100 2.86 1.54 0.57 0.29

With Go-back-N algorithm (GBN), the latency required to disseminate 50 capsules on a

random topology is 0.85 minutes and the active radio time is 0.14 minutes. In case of grid

topology, the latency required is 0.78 minutes and the active radio time is 0.15 minutes. For

disseminating data with 100 capsules, the latency required in grid topology is lesser than

that of random topology. The active radio time in case of random topology is closer to that

of grid topology and is less than that of selective retransmission (SR) algorithm.

With SR, for random topology, the latency required is higher than that of GBN. In case

of GBN, during recovery, a sensor retransmits all the capsules in the window. Hence, it

helps the successors that have missed a particular capsule in the current window to recover.

By contrast, in case of SR, when a sensor detects that one of its successors lags behind, it

retransmits the particular capsule. This helps only that successor to recover, unlike GBN,

and, hence, the sensor has to learn the status of other successors in future slots. Thus, with
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random topologies, GBN performs better. We did not experience this behavior in case of

grid topology as a sensor has at most two successors and, hence, retransmitting the whole

window is expensive. Therefore, SR performs better on a grid topology and the active radio

time is significantly less compared to random topology.

4.7 Comparison: Go-Back-N and Selective Retransmission

In this section, we summarize our results. First, in Section 4.1, we show that both Go-back-

N and selective retransmission algorithms provide a uniform, fine-grained pipelining service.

This ensures that Infuse does not have the dynamic behavior expressed in [7]. Also, in Sec-

tion 4.2, we observe that the latency and the active radio time grow linearly with respect

to data size for both the algorithms. Second, in Section 4.3, to our surprise, we observe

that the use of preferred predecessors does not significantly improve the performance of Go-

back-N algorithm. This is due to the fact that with preferred predecessors, duplicate sources

are reduced. As a result, the probability of successfully retransmitting the entire window

during recovery is reduced. By contrast, we do not observe this behavior with selective re-

transmission algorithm, as a sensor selectively retransmits only lost capsules during recovery.

Third, in Section 4.4, we observe that the window size should be chosen carefully in case of

Go-back-N. On the contrary, window size (≥ 6) does not affect the performance of selective

retransmission algorithm. While selective retransmission performs better on a grid topology

with no failures, from Sections 4.5 and 4.6, we observe that Go-back-N performs better in

presence of failed sensors and on random topologies. Table 3 summarizes the results.

Table 3: Comparison of recovery algorithms
Go-back-N Selective retransmission

Message overhead none 2b bits, 2b = window size

Preferred predecessors does not reduce active radio time reduces active radio time

Pipelining uniform, fine-grained uniform, fine-grained

Latency/active radio time linear linear

Window size affects latency does not affect latency

Failed sensors tolerates random failures increases latency considerably

Random topology does not increase active radio time increases active radio time
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In general, in traditional networking, it is expected that selective retransmission be better

than Go-back-N. From Table 3, we observe that for a grid topology with no failures, this

is valid. However, if the network has a random topology or can be affected by failures,

Go-back-N is better than selective retransmission. This is due to the fact that unlike SR,

inherent redundancy is available in GBN, where a sensor recovers all the successors that

have missed a capsule in the current window during recovery. Thus, this shows a somewhat

counter-intuitive result that if the deployment may not be uniform or where sensors may

fail, Go-back-N is preferable to selective retransmission.

5 Comparison with Related Work

Related work on dissemination has been addressed for wired networks in [24] where reliable

transmission of multicast messages using multiple multicast channels is proposed. One of the

important concerns in dissemination for wireless networks is the broadcast storm problem [25].

Specifically, in dissemination using naive flooding based algorithms, a broadcast storm is

created where redundant broadcasts, contention, and collisions occur. Infuse is not affected

by the broadcast storm problem since contention/collisions are managed by TDMA.

Network programming. Related work on dissemination protocols, especially for network

programming in sensor networks, include Deluge [7] and multihop network reprogramming

(MNP) [9]. Deluge is an epidemic protocol for disseminating large data objects that uses

Trickle [26] to suppress redundant advertisements and requests, and to minimize the set of

concurrent senders. MNP is a network reprogramming service that uses a sender selection

algorithm to reduce the number of concurrent senders. Additionally, in MNP, sensors are

allowed to turn their radio off whenever they are not transmitting or receiving new packets.

Comparison of Deluge and MNP with Infuse. In Table 4, we compare the simulation results

of Deluge and MNP protocols with that of Infuse. Specifically, we compare the latency and

the active radio time during dissemination of data of size 5.4 KB on a 10x10 network, where
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the interference ratio = 4. (We have chosen the data size as 5.4 KB based on the availability

of results from [7,9].) The latency with Go-back-N (GBN) and selective retransmission (SR)

algorithms is less than that of Deluge and MNP. Furthermore, the active radio time with

Infuse (= 1.0 minutes for GBN) is significantly less than that of Deluge (= 11.67 minutes)

and MNP (= 5.87 minutes). This is due to the fact that Infuse allows each sensor to turn

its radio off in the slots not assigned to itself and its neighbors. In particular, for the grid

topology, a sensor keeps its radio on only in the slots assigned to itself and to its 4 grid

neighbors. Therefore, Infuse offers an energy-efficient dissemination service.

Table 4: Go-back-N (GBN) and selective retransmission (SR) Vs. Deluge
and MNP for dissemination on a 10x10 grid, where interference ratio = 4
Protocol Data size No. of packets Latency Active radio time

or capsules (in minutes) (in minutes)

Deluge [7] 5.4 KB 240 11.67 11.67

MNP [9] 5.6 KB 256 9.61 5.87

Infuse GBN 5.4 KB 345 5.21 1.0
SR 5.4 KB 345 4.83 0.93

If the network density increases or the radio hardware is different then the interference

ratio increases. Since Deluge and MNP use a CSMA based communication service, due to

hidden terminal effect and network congestion, we expect that the latency and the active

radio time would increase in such cases. In Infuse, the TDMA period increases with inter-

ference ratio. As a result, the latency increases. However, the active radio time remains the

same (cf. Table 5), as the sensor keeps its radio on only for 5 slots in each TDMA period.

Table 5: Results for Go-back-N (GBN) and selective retransmission (SR)
for dissemination of data of size 5.4 KB (= 345 capsules) on a 10x10 network
with different interference ratios (extrapolated from the results for interfer-
ence ratio = 4)
Recovery Algorithm Latency (in minutes) Active radio time (in minutes)

Interference ratio = 6

GBN 10.02 1.0
SR 9.29 0.93

Interference ratio = 8

GBN 16.43 1.0
SR 15.23 0.93

Based on this comparison, we expect that Infuse will be highly beneficial in scenarios
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where the network is sparse and already deployed. However, in laboratory environments and

in dense networks, the TDMA period may be very high. Hence, Infuse is not intended for

such scenarios.

Other dissemination protocols. Other dissemination protocols include sensor protocols

for information via negotiation (SPIN) [5], multihop over the air programming (MOAP) [6],

and transport protocols [27, 28]. In SPIN, a 3-way handshake protocol (ADV/REQ/Data)

is used to disseminate the data. Furthermore, meta-data (i.e., high-level descriptors of

data) is used to declare the availability of new data. Infuse differs from SPIN in that

no negotiations using meta-data are necessary and reliability is achieved through implicit

acknowledgments. In MOAP, a publish-subscribe interface similar to [4] is used to provide

dissemination (especially, reprogramming) service. In this scheme, a sensor has to receive

the entire code before it can send meta-data about the availability of new code. MOAP uses

sliding window mechanisms and negative acknowledgments for loss recovery. By contrast,

with Infuse, each capsule is forwarded as soon as possible. And, Infuse uses sliding window

mechanisms with implicit acknowledgments for loss recovery.

Work related to transport protocols in sensor networks is also used for data dissemina-

tion. Examples of transport protocols for sensor networks include pump slowly, fetch quickly

(PSFQ) [28] and reliable multi-segment transport (RMST) [27]. These protocols rely on neg-

ative acknowledgments for loss recovery. By contrast, Infuse uses implicit acknowledgments

in order to recover lost capsules. Additionally, Infuse takes advantage of the underlying

TDMA based MAC in providing a pipelined service.

6 Application of Infuse in Network Programming

We implemented Infuse on TinyOS for Mica-2 and XSM motes. In the DARPA NEST

meeting on extreme scaling in sensor networks (ExScal demonstration, Avon Park, FL,

December 2004) [1], we demonstrated Infuse on Mica-2 motes to reprogram the network

with a new program, using Go-back-N based recovery algorithm.
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We demonstrated Infuse on a 5x5 grid with inter-sensor separation of 8 ft. We integrated

Infuse with SS-TDMA [10] to assign time slots to each sensor. We used a conservative esti-

mate of interference ratio, y=6. Initially, the base station contained the new data (i.e., new

program for the sensors). The size of the new program was 2 KB (=128 capsules). First, the

base station established the TDMA schedule according to the SS-TDMA algorithm. Then,

it disseminated the program capsules, one in each of its TDMA slots. In this experiment,

the dissemination latency was 3.5 minutes. The active radio time during the dissemination

process was approximately 25 seconds. These results are close to the analytical estimate for

latency (= 3.37 minutes) and active radio time (= 19.2 seconds).

We found similar results in other experiments at Michigan State University. We have

experimented with Infuse for reprogramming the network with programs of size from 2 KB-

15 KB, interference ratio of 4-6 and window size of 6-12. In all these experiments, the results

were consistent with the analytical estimate/simulation results.

7 Discussion

In this section, we discuss some of the questions raised by this work.

How does Infuse perform for different interference ranges or network densities?

In [21,22], it has been shown that a signal from a (Mica based) sensor (say, j) reaches a

sensor within distance 10 m (called, connected region or communication range) with probabil-

ity ≥ 98%. And, the sensors at distance 10−32 m (called, transitional region or interference

range) receive the signal from j with a reduced probability. Finally, the sensors at distance

> 32 m (called, disconnected region), do not receive the signal from the sender. Based on

this discussion, the ratio of the interference range to communication range is around 3.2. If

the network density increases (or a different sensor/radio hardware is used) then this ratio

may increase. As a result, more sensors may fall in the transitional region. Therefore, the

interference ratio would have to be increased. Figure 13 shows the performance of Infuse
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with different interference ratios. As the ratio increases, the latency also increases. For a

given interference ratio, the latency grows linearly with respect to the data size. Moreover,

in case of grid topology, the number of slots for which a sensor keeps its radio on is approxi-

mately 5×the number of capsules (one slot to forward, 4 slots to listen to its grid neighbors).

Hence, the active radio time is independent of the interference ratio.
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Figure 13: Effect of interference ratio on dissemination latency

In case of even larger values of interference ratio, the probability that a given message

reaches a longer distance increases. Towards this end, we can use the SS-TDMA algorithm

customized for larger communication ranges [10]. In this approach, not all sensors are re-

quired to forward the data. Specifically, the sensors that are farther away from the sender

can forward the data. In case of random topologies, we can organize the network into clusters

and elect cluster heads/leaders [12]. Alternatively, we can compute the minimum connected

dominating set or MCDS (similar to Sprinkler [29]). Once the leaders or the sensors in

MCDS are identified, we can establish a TDMA schedule (e.g., using [11,12]) for them. The

remaining sensors can then listen to the slots assigned to their closest leaders or sensors in

MCDS. Thus, Infuse can be easily modified to disseminate data in high density networks.

What is the tradeoff in using preferred predecessors?

In Section 2.2, we proposed a heuristic that allows the sensors to reduce the number of

message receptions during the dissemination process. This heuristic allows each sensor to

select one of its predecessors as its preferred predecessor. The sensor now listens to slots

assigned to its preferred predecessor. This preferred predecessor is responsible for recovery
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from lost capsules at the sensor. Other predecessors can turn their radio off in the slots

assigned to this sensor. Thus, the number of duplicate receptions are reduced. As a result,

energy usage and number of message receptions during dissemination are reduced.

With this mechanism, the effective diameter of the network may be increased, since a

sensor listens only to its preferred predecessor. However, as shown in Section 3, once the first

capsule is propagated across the network, the rest of the capsules can be propagated in a

pipeline fashion. As observed in Figure 10(a), the dissemination latency for data containing

1000 capsules remains almost the same in 3x3, 5x5, and 10x10 networks. Hence, even if the

diameter of the network increase, the dissemination latency does not increase significantly (cf.

Section 4.3 for simulation results). However, in case of Go-back-N based recovery algorithm,

the active radio time increases for larger networks as the sensors have to rely on their

preferred predecessors for loss recovery, thereby, increasing the number of retransmissions.

By contrast, the active radio time is reduced with selective retransmission based recovery

algorithm. This is due to the fact that only the lost capsules are retransmitted by the

preferred predecessors (unlike Go-back-N algorithm).

Can we use Infuse to disseminate data in large scale networks?

Yes. Towards this end, first, we note that the dissemination latency does not increase

significantly as the network diameter increases (cf. Figure 10(a)). In applications such as

[1,2], where 1000’s of sensors are deployed in a large field, the network is typically partitioned

into several sections. We can use Infuse to disseminate data in each section independently

and simultaneously. Thus, the whole network can be updated with the new data in the time

it takes to disseminate the data across a single section.

8 Conclusion

In this paper, we presented Infuse, a TDMA based data dissemination protocol for sensor

networks. To deal with random message losses caused by varying link properties and message
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corruption, we considered two recovery algorithms based on the sliding window protocols that

use implicit acknowledgments. The first algorithm, Go-back-N, adds no extra information

to the payload of a message. With Go-back-N, we showed that the window size should be

chosen carefully. And, we observed that Go-back-N tolerates failed sensors without signifi-

cant degradation. The second algorithm, selective retransmission, adds 2b extra bits to the

message, where 2b is the size of the window. With selective retransmission, we showed that

window size (≥ 6) does not affect the protocol. However, in presence of failed sensors, we

showed that it increases latency considerably. Thus, we find a somewhat counter-intuitive

result that Go-back-N is preferable to selective retransmission if topology is not uniform or

if failures may occur.

In presence of no channel errors, we estimated the dissemination latency. We showed

that the data is propagated in a pipeline and, hence, the latency is reduced. We argued that

Infuse is energy-efficient. Specifically, we showed that message transmissions/receptions are

reduced. Since Infuse uses a TDMA based MAC protocol, sensors need to listen to the radio

only in the slots assigned to their neighbors. In the remaining slots, sensors can turn off their

radio. Moreover, we proposed an algorithm to reduce messages receptions and the active

radio time further by using the notion of preferred predecessors.

Reliable data dissemination is a bandwidth intensive and time consuming operation.

Hence, it has the potential to disrupt the communication of the underlying application. In

a CSMA based network, this disruption is expected to be severe, as the network is highly

congested. By contrast, a TDMA based protocol can provide some guarantees about the

communication of the underlying application. Since the application messages (e.g., event

messages) are rare and are time critical, the TDMA algorithm can be extended to provide

high priority for such messages. The TDMA algorithm can also be customized (e.g., using

[10]) for the communication pattern of the application. Thus, the TDMA algorithm can

communicate such rare messages reliably. In this context, in [10], we have compared the

30



performance of CSMA with SS-TDMA. Specifically, if the only communication consists of

event messages, SS-TDMA improves the reliability from 50% to 100% with a small increase

in the delay. It follows that if event messages have to compete with bandwidth intensive

dissemination then a TDMA based service such as Infuse will be especially useful.

We have implemented Infuse in TinyOS [15] for Mica based sensor devices. We applied

Infuse to reprogram a 5x5 network with a program of size from 2 KB-15 KB. The latency,

active radio time, message transmissions/receptions are close to the simulation results dis-

cussed in this paper. We have demonstrated Infuse to the DARPA NEST team during the

ExScal project demonstration in Avon Park, FL, December 2004 [1].
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