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Abstract. Transformations from shared memory model to wireless sen-
sor networks (WSNs) quickly become inefficient in the presence of preva-
lent message losses in WSNs, and this prohibits their wider adoption.
To address this problem, we propose a variation of the shared memory
model, the SF shared memory model, where the actions of each node
are partitioned into slow actions and fast actions. The traditional shared
memory model consists only of fast actions and a lost message can disable
the nodes from execution. Slow actions, on the other hand, enable the
nodes to use slightly stale state from other nodes, so a message loss does
not prevent the nodes from execution. We quantify over the advantages
of using slow actions under environments with varying message loss prob-
abilities, and find that a slow action has asymptotically better chance
of getting executed than a fast action when the message loss probability
increases. We also present guidelines for helping the protocol designer
identify which actions can be marked as slow so as to enable the trans-
formed program to be more loosely-coupled, and tolerate communication
problems (latency, loss) better.

1 Introduction

Several computation models have been proposed for distributed computing, in-
cluding shared memory model, read/write model, and message passing model.
These models differ with respect to the level of abstraction they provide. Low
level models such as the message passing model permits one to write programs
that are closer to the actual system implementation and, hence, the programs can
potentially be implemented more efficiently. However, since such programs need
to analyze low level communication issues such as channel contention, message
delays, etc, they are difficult to design and prove. Using a high level abstrac-
tion enables the designers to ignore low-level details of process communication
and facilitates the design and verification of the protocols. For example, shared
memory model, which allows a node to simultaneously read all its neighbors and
update its own state, has been used extensively in the distributed systems liter-
ature. The drawback of using a high level abstraction model is that the system
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implementation requires more effort. While transformations from shared mem-
ory model to read/write model or message passing model have been considered
in the literature [5, 9, 10], the efficiency of the transformed program suffers.

Wireless sensor networks (WSNs) warrant a new computation model due
to their wireless broadcast communication mode, not captured in any of the
above-mentioned models. Write-all-with-collision (WAC) model has been pro-
posed in [6] to capture the important features of wireless broadcast communica-
tion for WSNs. In this model, in one step, a node can write its own state and
communicate it to its neighbors. Due to the nature of shared medium, if one
node is being updated by two (or more) of its neighbors simultaneously then the
update fails (message collisions leads to message loss). While WAC model en-
ables us to analyze the energy efficiency and message cost of protocols in WSNs
more easily, it is not easy to design and prove protocols in WAC model compared
to a higher level model such as the shared memory model.

Transformations from shared memory model to WAC model exist [6,8], how-
ever, these transformations have practical problems prohibiting their wider adop-
tion. Although the shared memory model and the WAC model are similar in
spirit (in that the former allows a node to read all its neighbors whereas the lat-
ter allows the node to write to all its neighbors), direct transformation becomes
inefficient when message losses are considered. In [6], a CSMA based transforma-
tion, Cached Sensornet Transform (CST), from shared memory model to WAC
model has been presented. In CST, a single message loss may violate the cor-
rectness of the resultant concrete program in the WAC model. The proof in [6]
shows that if the abstract program was designed to be self-stabilizing and no
other message loss occurs for a sufficiently long period, the concrete program
will stabilize and start making progress. Thus, given the message loss rates at
WSNs, this transformation incurs heavy correctness and performance loss at
the WAC level. In [8], a transformation from read/write model to WAC model
has been presented, and as we show in Section 3, it also applies for transforma-
tion from shared memory model to WAC model. This transformation employs a
TDMA schedule to reduce message losses in the WAC model, however, due to
interference, fading, or sleeping nodes, message losses are still likely in the real
deployment. Message losses do not violate safety in this transformation, but they
reduce the performance because the loss of a broadcast from a node prevents
the evaluation of the actions at other nodes that depended on that information.

Contributions of the paper. To address the performance problems of trans-
formations to WAC model, we propose a variation of the shared memory model,
the SF shared memory model. In the SF shared memory model, a node is allowed
to read the state of its neighbors and write its own state. However, actions of
each node are partitioned into ‘slow’ actions and ‘fast’ actions. If a node j deter-
mines that a fast action is enabled then j must execute the action immediately
before j’s neighbors change their state. Otherwise, j must verify whether that
action is still enabled the next time it evaluates its guards. On the other hand,
if j determines that a slow action is enabled then j can execute the action at
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any point later as long as j does not execute any other action in between. Note
that neighbors of j could change their state in the meanwhile.

We show that the use of SF shared memory model improves the performance
of the transformed program under environments with message loss. The tradi-
tional shared memory model consists only of fast actions, and a lost message
can disable the nodes from execution. Slow actions, on the other hand, enable
the nodes to use slightly stale state from other nodes, so a message loss does
not prevent the node from execution. We show that a slow action has asymp-
totically better chance of getting executed than a fast action when the message
loss probability increases. By the same token, SF model also allows us to deal
with another aspect of WSNs where nodes sleep periodically to save energy.

We present guidelines for the protocol designer to identify slow and fast
actions. The designer can mark an action as slow only if 1) guard is stable, 2)
guard depends only on local variables (this covers a rich set of programs), or
3) guard is a “locally stable” predicate. These conditions are increasingly more
general; stable predicate implies locally stable predicates, but not vice versa.
Local stable predicate with respect to j can change after j executes (then other
neighbors can execute as the local stable contract is over at that time).

We also introduce slow-motion execution of fast actions. Under continuous
message losses, fast actions may never get to execute. This results in bad perfor-
mance and also violates strong fairness. In order to ensure strong fairness and
to achieve graceful degradation of performance under environments with high
message loss, we use slow-motion execution. Slow motion execution deliberately
slows down the actions that the fast-action depends on, so that the fast action
can execute as a pseudo-slow action. The fast action does not need to use the
latest state, but it can use a recent consistent state.

Last but not least, our work draws lessons for protocol designers working
at the shared memory model level. In order to preserve performance during the
transformation, the designers should try to write actions as slow actions. This
enables the concrete system to be more loosely-coupled, and tolerate communi-
cation problems (latency, loss) better.
Organization of the paper. First, in Section 2, we introduce the structure of
programs and the computational models considered in this paper. In Section 3,
we present the transformation from shared memory model to WAC model. Then,
in Section 4, we introduce the notion of slow and fast actions. Subsequently, in
Section 5, we provide an illustrative example. And, in Section 6, we analyze the
effect of slow and fast actions. In Section 7, we present an approach for slow-
motion execution of fast actions. In Section 8, we discuss some of the questions
raised by this work, and finally, in Section 9, we make concluding remarks.

2 Preliminaries

A program is specified in terms of its processes. Each process consists of a set of
variables and a set of guarded commands that update a subset of those variables
[4]. Each guarded command (respectively, action) is of the form
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guard −→ statement,

where guard is a predicate over program variables and statement updates the
program variables. An action g −→ st is enabled when g evaluates to true and
to execute that action st is executed. A computation consists of a sequence
s0, s1, . . . , where sl+1 is obtained from sl (0 ≤ l) by executing one or more
actions in the program.

Observe that a process can read variables of other processes while evaluating
guards of its actions. The copies of these variables can be used in updating
the process variables. Hence, we allow declaration of constants in the guard
of an action. Intuitively, these constants save the value of the variable of the
other process so that it can be used in the execution of the statement. As an
illustration, consider a program where there are two processes j and k with
variables x.j and x.k respectively. Hence, an action where j copies the value of
x.k when x.j is less than x.k is specified as follows:

Let y = x.k

x.j < y −→ x.j = y

Note that in a distributed program, for several reasons, it is necessary that
a process can only read the variables of a small subset of processes called the
neighborhood. More precisely, the neighborhood of process j consists of all the
processes whose variables can be read by j.

A computation model limits the variables that an action can read and write.
We now describe shared memory model and WAC model.
Shared memory model. In shared memory model, in one atomic step, a
process can read its state as well as the state of all its neighbors and write its
own state. However, it cannot write the state of other processes.
Write all with collision (WAC) model. In WAC model, each process (or
node) consists of write actions (to be precise, write-all actions). In one atomic
action, a process can update its own state and the state of all its neighbors.
However, if two or more processes simultaneously try to update the state of
another process, say l, then the state of l remains unchanged. Thus, this model
captures the broadcast nature of shared medium.

3 Basic Shared Memory Model to WAC Model

In this section, we present an algorithm (adapted from [8]) for transforming
programs written in shared memory model into programs in WAC model. First,
note that in WAC model, there is no equivalent of read action. Hence, an action
by which node j reads the state of k in shared memory model needs to be modeled
in WAC model by requiring k to write its state at j. When k executes this write
action, no other neighbor of j can execute simultaneously. Otherwise, due to
collision, j remains unchanged. To deal with collisions, TDMA (e.g., [2, 3, 7]) is
used to schedule execution of actions. Figure 1 outlines the transformation from
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shared memory model to WAC model. This algorithm assumes that message
losses (other than collisions) do not occur.

Input: Program p in shared memory model
begin

Step 1: Slot computation

compute TDMA schedule using a slot assignment algorithm (e.g., [2, 3,7])
Step 2: Maintain state of neighbors

for each variable v.k at k, node j (k ∈ N.j, where N.j denotes neighbors
of j) maintains a copy copyj .v.k that captures the value of v.k

Step 3: Transformation

if slot s is assigned to node j

for each action gi −→ sti in j

evaluate gi
if gi mentions variable v.k, k 6= j

use the copyj .v.k to evaluate gi
end-if

end-for
if some guard gi is enabled

execute sti
else

skip;
end-if
for all neighbors k in N.j

for each variable v.j in j, copyk.v.j = v.j

end-for
end-if

end

Fig. 1. TDMA based transformation algorithm

In the algorithm, each node maintains a copy of all (public) variables of its
neighbors. And, each node evaluates its guards and executes an enabled action
in the slots assigned to that node. Suppose slot s is assigned to node j. In slot
s, node j first evaluates its guards. If a guard, say g, includes variable v.k of
neighbor k, j uses copyj .v.k to evaluate g. And, if there are some guards that
are enabled then j executes one of the enabled actions. Subsequently, j writes
its state at all its neighbors. Since j updates its neighbors only in its TDMA
slots, collisions do not occur during the write operation.

In this algorithm, under the assumption of no message loss, whenever a node
writes its state at its neighbors, it has an immediate effect. Thus, whenever a
node is about to execute its action, it has fresh information about the state of all
its neighbors. Hence, if node j executes an action based on the copy of the state
of its neighbors then it is utilizing the most recent state. Moreover, the algorithm
in Figure 1 utilizes TDMA and, hence, when node j is executing its action, none
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of its neighbors are executing. It follows that even if multiple nodes execute their
shared memory actions at the same time, their effect can be serialized. Thus,
the execution of one or more nodes in a given time instance is equivalent to a
serial execution of one or more shared memory actions.

Theorem 1. Let p be the given program in shared memory model. And, let p′

be the corresponding program in WAC model transformed using the algorithm
in Figure 1. For every computation of p′ in WAC model there is an equivalent
computation of p in shared memory model. ⊓⊔

4 Slow and Fast Actions

According to Section 3, when a process executes its shared memory actions, it
utilizes the copy of the neighbors’ state. However, when message losses occur, it
is possible that the information j has is stale. In this section, we discuss how a
node can determine whether it is safe to execute its action.

For the following discussion, let g −→ st be a shared memory action A at
node j. To execute A, j needs to read the state of some of its neighbors to
evaluate g and then execute st if g evaluates to true. Let N denote the set of
neighbors whose values need to be read to evaluate g. In the context of WSNs,
j obtains its neighbors’ values by allowing the neighbors to write the state of j.
In addition to the algorithm in Figure 1, we require the update to be associated
with a timestamp which can be implemented easily and efficiently 4. Next, we
focus on how j can determine whether g evaluates to true.

4.1 When do we evaluate the guard?

The first approach to evaluate g is to ensure that the knowledge j has about
the state of nodes in N is up-to-date. Let Cur denote the current time and let tk
denote the time when k notified j of the state of k. The information j has about
nodes in N is latest iff for every node k in N, k was not assigned any TDMA
timeslot between (tk,Cur).

Definition 1 (Latest). We say that j has the latest information with respect
to action A iff latest(j,A) is true, where

latest(j,A) = (∀k : k ∈ N : k updated the state of j at time tk and
k does not have a TDMA slot in the interval (tk,Cur),
where Cur denotes the current time.)

Clearly, if latest(j,A) is true and g evaluates to true then g is true in the
current global state, and, j can execute action A. Of course, if action A depends
upon several neighbors then in the presence of message loss or sleeping nodes,

4 In the context of TDMA and the algorithm in Figure 1, the timestamp information
can be relative. Based on the results in Section 6, it would suffice if only 2-4 bits are
maintained for this information.
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it is difficult for j to ensure that g holds true in the current state. For this
reason, we change the algorithm in Figure 1 as follows: Instead of maintaining
just one copy for its neighbors, j maintains several copies with different time
values (i.e., snapshots). Additionally, whenever a node updates its neighbors,
instead of just including the current time, it includes an interval (t1, t2) during
which this value remains unchanged. Based on these, we define the notion that j
has a consistent information about its neighbors although the information may
not be most recent.

Definition 2 (Consistent). We say that j has consistent information as far
as action A is concerned iff consistent(j, t,A) is true, where

consistent(j, t,A) = (∀k : k ∈ N : k updated the state of j at time tk and
k does not have a TDMA slot in the interval (tk, t))

Observe that if consistent(j, t,A) is true and g evaluates to true based on
most up-to-date information at time t then this implies that it is safe to execute
A at time t. After j executes it can discard the old snapshots, and start collecting
new snapshots. As we show in Section 6, at most 3 or 4 snapshots is enough for
finding a consistent cut, so the memory overhead is low.

Even though satisfying latest(j,A) may be difficult due to message losses
and/or sleeping nodes, satisfying consistent(j, t,A) is easier (cf. Section 6). If j
misses an update from its neighbor, say k, in one timeslot then j may be able
to obtain it in the next timeslot. Moreover, if state of k had not changed in the
interim, j will be able to detect if a guard involving variables of k evaluates to
true. Furthermore, if action A involves several neighbors of j then it is straight-
forward to observe that the probability that consistent(j, t,A) is true for some
t is significantly higher than the probability that latest(j,A) is true.

The notion of consistency can be effectively used in conjunction with sleeping
nodes. If node k is expected to sleep during an interval (t1, t2), it can include
this information when it updates the state of j. This will guarantee j that state
of k will remain unchanged during the interval (t1, t2) thereby making it more
feasible to ensure that it can find a consistent state with respect to its neighbors.

4.2 When do we execute the action?

The problem with the notion of consistency is that even though the guard of
an action evaluated to true at some point in the past, it may no longer be true.
Towards this end, we introduce the notion of a slow action and the notion of a
fast action. (We call the resulting model as SF shared memory model.)

Definition 3 (slow action). Let A be an action of j of the form g −→ st. We
say that A is a slow action iff the following constraint is true:

(g evaluates true at time t) ∧

(j does not execute any action between interval [t, t′])
⇒ (g evaluates true at time t′)
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Rule 1: Rule for execution of a slow action. Let A be a slow action of node j.
Node j can execute A provided there exists t such that consistent(j, t,A) is true
and j has not executed any action in the interval [t, Cur ) where Cur denotes
the current time.

Definition 4 (fast action). Let A be an action of j of the form g −→ st. We
say that A is a fast action iff it is not a slow action.

Rule 2: Rule for execution of a fast action. Let A be a fast action of node j.
Node j can execute A provided latest(j,A) is true.

If the algorithm in Figure 1 is modified based on the above two rules, i.e.,
slow actions can be executed when their guard evaluates to true at some time
in the past and fast actions are executed only if their guard evaluates to true in
the current state, then we can prove the following theorems:

Theorem 2. Let j and k be two neighboring nodes with actions A1 and A2

respectively. If both A1 and A2 are slow actions then their execution by Rule 1
is serializable. ⊓⊔

Theorem 3. Let j and k be two neighboring nodes with actions A1 and A2

respectively. If both A1 and A2 are fast actions then their execution by Rule 2 is
serializable. ⊓⊔

Theorem 4. Let j and k be two neighboring nodes with actions A1 and A2

respectively. Let A1 be a slow action and let A2 be a fast action. Then, their
execution according to Rules 1 and 2 is serializable. ⊓⊔

5 An Illustrative Example

In this section, we use the tree program from [1] to illustrate the notion of slow
and fast actions. In this tree program (cf. Figure 2), each node j maintains three
variables: P.j, that denotes the parent of node j, root.j that denotes the node
that j believes to be the root, and color.j that is either green (i.e., the tree is not
broken) or red (i.e., the tree is broken). Each node j also maintains an auxiliary
variable up.j that denotes whether j is up or whether j has failed.

The protocol consists of five actions. The first three are program actions
whereas the last two are environment actions that cause a node to fail and
recover respectively. The first action allows a node to detect that the tree that it
is part of may be broken. In particular, if j finds that its parent has failed then
it sets its color to red. This action also fires if there is a parent and the parent
is colored red. Observe that with the execution of this action, if a node is red
then it will eventually cause its descendents to be red. The second action allows
a red node to separate from the current tree and form a tree by itself provided
it has no children. The third action allows one node to join the tree of another
node. In particular, if j observes that its neighbor k has a higher root value and
both j and k are colored green then j can change its tree by changing P.j to k

and root.j to root.k. The fourth action is a fault action that causes a node to
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fail (i.e., up.j = false). Due to the execution of this action, the first action will
be enabled at the children. And, finally, the last action allows a node to recover.
When a node recovers, it sets its color to red.

AC1 : color.j = green∧

(¬up.(P.j) ∨ color.(P.j) = red) −→ color.j = red

AC2 : color.j = red∧

(∀k : k ∈ Nbr.j : P.k 6= j) −→ color.j, P.j, root.j = green, j, j

AC3 : Let x = root.k

root.j < x ∧ color.j = green∧

color.k = green −→ P.j, root.j = k, x

AC4 : up.j −→ up.j = false

AC5 : ¬up.j −→ up.j, color.j = true, red

Fig. 2. Coloring tree program

We can make the following observations about this program.

Theorem 5. AC1 and AC2 are slow actions.

Proof. If a node detects that its parent has failed or its parent is red then this
condition is stable until that node (child) separates from the tree by executing
action AC2. Hence, AC1 is a slow action. Likewise, if a node is red and has no
children then it cannot acquire new children based on the guard of AC3. ⊓⊔

Theorem 6. AC3 is a fast action.

Proof. After j evaluates its own guard for AC3, it is possible that the guard
becomes false subsequently if k changes its color by executing AC1 or if k changes
its root by executing AC3. Hence, AC3 is a fast action. ⊓⊔

6 Effect of Slow versus Fast Actions During Execution

In this section, we evaluate the execution conditions of slow and fast actions
in the presence of message loss. To execute a fast action, each node j needs to
evaluate whether it has obtained the latest information about the state of its
neighbors. If latest(j,A) evaluates to true for some action then j can evaluate
the guard of that action and execute the corresponding statement. If latest(j,A)
is false for all actions then j must execute a ‘skip’ operation and see if it can
obtain the latest information in the next TDMA round. For the execution of
a slow action, j proceeds in a similar fashion. However, if j obtains consistent
information about its neighbors that is not necessarily from the latest TDMA
round, j can execute its action.

Next, we evaluate the probability that j can obtain the necessary consistent
and latest state information. Let p be the probability of a message loss and let
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N denote the number of neighbors whose status needs to be known to evaluate
the guard of the action. If j cannot successfully obtain consistent and/or latest
state information in one TDMA round then it tries to do that in the next round.
Hence, we let m denote the number of TDMA rounds that j tries to obtain the
consistent and/or latest information. Assuming that states of the neighbors do
not change during these m rounds, we calculate the probability that j can obtain
the required consistent and/or latest state information 5.

Probability of obtaining latest information. To obtain the latest infor-
mation in one TDMA round, j needs to successfully receive message from each
of its neighbors. Probability of successfully receiving message from one neighbor
is (1 − p). Hence, the probability of obtaining latest information in one round
is (1 − p)N . And, the probability of not obtaining the latest information in one
round is 1− (1−p)N . Therefore, probability of not obtaining the latest informa-
tion in any one of m rounds is (1− (1− p)N)m. Thus, the probability that j can
obtain the latest information in at least one m rounds is (1− (1− (1− p)N )m).

Probability of obtaining consistent information. To obtain consistent
information in the earliest of m rounds, j needs to obtain information from
each of its neighbors in some round. (Observe that since the nodes include the
intervals where their value is unchanged, receiving a message from each node
at some round is enough for identifying the first round as the consistent cut.)
The probability that j does not receive message from one of its neighbors in
either of m rounds is pm. Hence, probability of successfully receiving message
from one neighbor is (1 − pm). Therefore, probability of successfully receiving
message from every neighbor is ((1−pm))N . Furthermore, there is an additional
conditional probability where j fails to get consistent information in the first
(earliest) round but obtains it in the next round. We account for this in our
calculations and graphs, but omit the full formula here for the sake of brevity.

Figures 3-5 show the probabilities for p = 10%, p = 20%, and p = 30%
respectively. First, we note that the probability of obtaining latest information
decreases as N increases for different values of m. A given node has to receive
updates from all its neighbors in order to obtain the latest information. Hence, as
N increases, latest probability decreases. Moreover, in a high message loss envi-
ronment (e.g., p = 20% and p = 30%), latest probabilities decrease significantly
as N increases. For small neighborhoods, the probability of getting latest infor-
mation improves as m increases. This suggests that if the neighbors remain silent
for some rounds then the probability of obtaining latest information improves.
On the other hand, although the probability of obtaining consistent information
decreases as N increases, for m ≥ 3, it remains close to 1. By choosing m = 3,
the probability of finding a consistent cut is virtually certain at p = 10%.

5 We can relax this assumption by requiring the nodes to include their old values
in previous rounds with their broadcast. These values are then used for finding a
consistent cut in the past. Our results show that it suffices for the node to include
values from the last 3 rounds for most cases. Observe that this method does not help
“latest” because learning an older snapshot does not allow executing a fast action.
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Fig. 3. Latest and consistent probabilities for p = 10%
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Fig. 4. Latest and consistent probabilities for p = 20%

Thus, the probability of obtaining the consistent information is significantly
higher than that of latest information. This suggests that it is better to utilize
protocols that have slow actions verses protocols that have fast actions. In par-
ticular, it is better if actions that depend on the value of several neighbors are
slow actions. On the other hand, if protocols must have fast actions, then it is
better if they rely on a small number (preferably 1) of neighbors.

7 Pseudo-slow Action

The results in Section 6 show that if actions of a program are slow then their
execution is expected to be more successful. Thus, the natural question is what
happens if all program actions were fast? Can we allow such a program to utilize
an old consistent state to evaluate its guard. We show that for a subset of the
original actions, this is feasible if we analyze the original shared memory program
to identify dependent actions.
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Fig. 5. Latest and consistent probabilities for p = 30%

We illustrate our approach in the context of the tree example in Section 5.
For the sake of discussion, let us assume that all actions are fast actions; this is
reasonable since it adds more restrictions on how each action can be executed.
Furthermore, let us consider the case that we want j to be able to execute AC3
by utilizing a consistent state although not necessarily the latest state. Recall
that action AC3 causes j to join the tree of k. If j is using a consistent state
that is not necessarily the latest state, it is possible that k has changed its state
in the interim. Observe that if k had increased the value of root.k by executing
AC3 then it is still safe for j to execute action AC3. However, if k executes AC1
and changes its color to red, subsequently observes that it has no children and
executes AC2 then it may not be safe for j to join the tree of k. Thus, if we
want to allow j to execute AC3 using a consistent state that is not necessarily
latest then k must be prevented from executing either AC1 or AC2. Again, for
the sake of discussion, let us assume that we want to restrict k from executing
AC2. Hence, in this case, we will say that pseudo-slow execution of AC3.j is
dependent upon slowing down AC2.k.

In this approach, we allow j to utilize consistent snapshots for up to x previ-
ous TDMA rounds (i.e., j can execute AC3.j if it obtains a consistent state that
is no more than x rounds before the current time and evaluates that the guard
of AC3 is true). However, in this case, if k ever wants to execute action AC2
then it must stay silent for at least x+1 TDMA rounds before executing action
AC2. Note that this will essentially disable execution of action AC3.j (i.e., at
the end of x + 1 silent rounds k knows that j cannot simultaneously execute
AC3.j and interfere with the execution of AC2.k) 6.

6 We can relax this x+1 silent rounds requirement. For this, we modify the algorithm
in Figure 1 slightly where a node, say j, not only notifies its neighbors about its
own state but also includes a timestamp information about messages received from
its neighbors. With this change, k can either execute its action AC2 if it stops
transmitting for x + 1 rounds or if it checks that j is aware of its color being red
and, hence, will not execute action AC3.j.
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We generalize this approach in terms of the following 4-step algorithm.

Step 1: Identify pseudo-slow actions. First, the designer needs to identify
the set of actions, A, that are fast actions but it is desired that they can exe-
cute as slow actions, where a node can utilize consistent (but not necessarily the
latest) information about the state of neighbors. The choice of A is application
dependent, i.e., it is based on the designers’ belief/observation that quick exe-
cution of these actions is likely to help execution of the program. We denote the
actions in A as a set of pseudo-slow actions since they are not slow actions but
behave similar to the slow actions.

Step 2: Identify dependent actions. Let Aj be one of the pseudo-slow
actions in A that is to be executed by node j. Let Aj be of the form g −→ st.
Since Aj is a fast action, this implies that if the guard of Aj is true in some
state then it can become false by execution of actions of one or more neighbors
of j. Hence, the goal of this step is to identify the set of actions, say A, such that
if (1) g evaluates to true in some state, (2) no action from A is executed, and
(3) no action of j is executed then it is still acceptable to execute the statement
st in the given shared memory program. The value obtained for A is called the
dependent actions of Aj .

In this step, for each action in A, we identify the corresponding set of depen-
dent actions. The dependent actions for A is obtained by taking the union of
these dependent actions. Step 2 is successful if A and its dependent actions are
disjoint. If there is an overlap between these two sets then the set of pseudo-slow
actions needs to be revised until this condition is met.

Step 3: Choosing the delay value. The next step is to identify how much
old information can be used in evaluating the guard of an action. Essentially,
this corresponds to the choice of x in the above example. We denote this as the
delay value of the corresponding action. The delay value x chosen for efficient
implementation of pseudo-slow actions is also user dependent. The value will
generally depend upon the number of neighbors involved in the execution of the
pseudo-slow action. Based on the analysis from Section 6, we expect that a value
of 3-4 is expected to be sufficient for this purpose.

Step 4: Revising the transformation algorithm. The last step of the al-
gorithm is to utilize A identified in Step 1, the corresponding dependent actions
identified in Step 2 and the delay value identified in Step 3 to revise the trans-
formation algorithm. In particular, we allow a pseudo slow action at j to execute
if (1) j obtains consistent state information about its neighbors, (2) j does not
have more recent information about its neighbors than the one it uses, and (3)
no more than x TDMA rounds have passed since obtaining the consistent state.

Additionally, a dependent action at j can execute if j does not transmit
its own state for at least x + 1 rounds. (It is also possible for j to execute a
dependent action earlier based on the knowledge j got about the state of its
neighbors. However, for reasons of space, we omit the details.)
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8 Discussion

What is specific to write-all in our transformation algorithm? Why is
this transformation not applicable for message passing?
Write-all-with-collision (i.e., wireless broadcast) model helps a lot for our trans-
formation, but is not strictly necessary. Our transformation is also applicable for
message-passing, if on execution of an action at k at its TDMA slot, its state is
made available to all of its neighbors before the next slot starts. It may not be
easy and inexpensive to guarantee this condition for message passing, whereas
for write-all with TDMA this condition is easily and inexpensively satisfied.
Can we relax the TDMA communication assumption?
The definitions of “latest” and “consistent” depend on the assumption that “k
does not have another (missed) TDMA slot until the cut”. This is used for
ensuring that k does not execute any action in that interval, so k’s new state is
not out of sync with the cached state in the cut. Without using TDMA, the same
condition can be achieved by using an alternative mechanism to communicate
that k will not update its state for a certain duration. For example k can include
a promise in its message that it will not update its state for some interval (e.g.,
until its next scheduled update, or until its sleep period is over).

Given that our transformation can tolerate message losses in the concrete
model, dropping the TDMA mechanism would not hurt the performance of the
transformed program significantly. The round concept could be used without the
TDMA slots, and the nodes would utilize CSMA to broadcast their messages.
What are the rules of thumb for marking actions as slow?
As mentioned in the Introduction, an action be marked slow only if 1) guard
is a stable predicate, 2) guard depends only on local variables, or 3) guard is
a “locally stable” predicate. While the first two conditions are easy to detect,
the locally stable condition requires reasoning about the program execution. We
expect the protocol designer to understand his program.

A big problem is marking a fast action as slow, as this would violate correct-
ness! It is better to err on the side of safety and mark the action as fast if there
is some doubt about it being a slow action. Marking a slow action as fast does
not violate correctness, but would just reduce the performance.
Do we need to use slow-motion execution for every program?
If the designer can mark all program actions as slow, there is obviously no
need for slow-motion execution as there is no fast action remaining. Even when
there are some fast actions remaining, if most of the actions are slow actions
and message loss rates are not very high, these fast actions may not reduce the
performance of the program significantly. However, if message loss rates increase
further, it could be more beneficial to switch to slow-motion execution than to
suffer from message losses voiding the latest cut and blocking the fast actions.

9 Conclusion

We have presented an extension to the shared memory model, by introducing
the concept of slow action. A slow action is one such that once it is enabled at a
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node j, it can be executed at any later point at j provided that j does not exe-
cute another action in between. Slow actions mean that the process can tolerate
slightly stale state from other processes, which enables the concrete system to be
more loosely-coupled, and tolerate communication problems better. We quanti-
fied the improvements possible by using a slow action, and gave practical rules
that help a programmer mark his program actions as slow and fast. For reducing
the performance penalty of fast actions under heavy message loss environments,
we also introduced the notion of slow-motion execution for fast actions.

Our work enables a good performance for transformed programs in realistic
WSN environments with message loss. In future work, we will investigate adap-
tive switching to slow-motion execution to curb the performance penalty that
message losses incur on fast actions. To this end, we will determine the break-
even point for switching to the slow-motion execution mode, and middleware for
switching to and back from the slow-motion mode seamlessly.
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