A Distributed and Deterministic TDMA Algorithm for Write-All-With-Collision Model


Several self-stabilizing time division multiple access (TDMA) algorithms are proposed for sensor networks. Such algorithms enable the transformation of programs written in abstract models considered in distributed computing literature into a model consistent with sensor networks, i.e., write all with collision (WAC) model. Existing TDMA slot assignment algorithms have one or more of the following properties: (i) compute slots using a randomized algorithm, (ii) assume that the topology is known upfront, and/or (iii) assign slots sequentially. If these algorithms are used to transform abstract programs into programs in WAC model then the transformed programs are probabilistically correct, do not allow the addition of new sensors, and/or converge in a sequential fashion. In this paper, we propose a self-stabilizing deterministic TDMA algorithm where a sensor is aware of only its neighbors. We show that the slots are assigned to the sensors in a concurrent fashion and starting from arbitrary initial states, the algorithm converges to states where collision-free communication among the sensors is restored. Moreover, this algorithm facilitates the transformation of abstract programs into programs in WAC model that are deterministically correct.

In Proceedings of the Tenth International Symposium on Stabilization, Safety, and Security of Distributed Systems
Mahesh Arumugam
Mahesh Arumugam

Mahesh Arumugam is a software engineer passionate about designing, programming, and deploying systems. Currently, I work in data security and analytics domain.