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Abstract. In this paper, we consider a new atomicity model, write all
with collision (WAC), and compare it with existing models considered in
the literature. This model captures the computations in sensor networks.
We show that it is possible to transform a program from WAC model
into a program in read/write model, and vice versa. Further, we show
that the transformation from WAC model to read/write model is sta-
bilization preserving, and the transformation from read/write model to
WAC model is stabilization preserving for timed systems. In the transfor-
mation from read/write model to WAC model, if the system is untimed
(asynchronous) and processes are deterministic then under reasonable
assumptions, we show that (1) the resulting program in WAC model
can allow at most one process to execute, and (2) the resulting program
in WAC model cannot be stabilizing. In other words, if a deterministic
program cannot read then it is important that it can tell time.

Keywords: Model conversions, Preserving stabilization, Atomicity re-
finement, Write-all-with-collision model, Read /Write model

1 Introduction

The ability of modeling abstract distributed programs and transforming them
into concrete programs that preserve the properties of interest is one of the
important problems in distributed systems. Such transformation allows one to
write a program in one (typically a simpler/restrictive) model and run it on
another (typically a general/less restrictive) model. Hence, several algorithms
(e.g., [1-5]) have been proposed for enabling such transformation.

In this paper, we are interested in a new model of computation that occurs in
sensor networks. These sensors are resource constrained and can typically com-
municate with other (neighboring) sensors over a radio network. One of the im-
portant issues in these networks is message collision: Due to the shared medium,
if a sensor simultaneously receives two messages then they collide and, hence,
both messages become incomprehensible. However, if a message communication
does not suffer from a collision then the message is written in the memory of all
neighbors of the sender.

Based on the above description, we can view the model of computation in
sensor networks as a write all with collision (WAC) model. Intuitively, in this
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model, in one atomic action, a sensor (process) can update its own state and the
state of all its neighbors. However, if two sensors (processes) simultaneously try
to update the state of a sensor (process), say k, then the state of k is unchanged.
(For precise definition, we refer the reader to Section 2.)

Moreover, in sensor networks, detecting such collisions is difficult due to
several reasons. For example, it is possible that a sensor succeeds in updating
the state of one of its neighbors even though its update causes collision at another
neighbor. Hence, in this paper, we assume that collisions are not detectable. We
would like to note that most of our results are also applicable for the case where
collisions can be detected. We discuss this issue in Section 6.

While previous literature has focused on transformations among other models

of computation (e.g., [1-5]), the issue of transformation from (respectively, to)
WAC model to (respectively, from) other models has not been considered. To
redress this deficiency, we focus on the problem of identifying the transformations
that will allow us to transform programs in WAC model into read/write model
(where a process can either read the state of one of its neighbors or write its
own state, but not both), and vice versa.
Contributions of the paper. In this paper, we focus on transformation from
WAC model under power-set semantics (where any subset of enabled actions
can be executed concurrently) into read/write model, and vice versa. We show
that concepts such as graph coloring (e.g., [6-8]), local mutual exclusion (e.g.,
[4]) and collision-free diffusion [9] can be effectively used for obtaining these
transformations. The main contributions of the paper are as follows:

— For untimed (asynchronous) systems, we present an algorithm for the trans-
formation of programs in read/write model into programs in WAC model.
We also show the optimality of this transformation; specifically, we show
that if the transformed program is deterministic, cannot use time and can-
not perform redundant writes (see Section 3 for definition) then at most
one process can execute at a time. Also, we argue that this transformation
cannot be made stabilization preserving.

— For timed systems, we present an algorithm for the transformation of pro-
grams in read/write model into programs in WAC model. This transforma-
tion permits concurrent execution of multiple processes. We also show that
if the given program in read/write model is stabilizing fault-tolerant [10,11],
i.e., starting from an arbitrary state, it recovers to states from where its
specification is satisfied, then, for a fixed topology, the transformed program
in WAC model is also stabilizing fault-tolerant. In other words, for timed
systems, we show that the transformation is stabilization preserving.

— We present an algorithm for the transformation of programs in WAC model
into programs in read/write model. We show that this transformation is
also stabilization preserving. This transformation does not assume that the
topology is fixed or known in advance.

— We show how to transform programs in other models considered in the lit-
erature to WAC model, and vice versa.

Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we introduce the read/write model and the WAC model. Then,
in Section 3, we present an approach for the transformation of programs in
read/write model into programs in WAC model under power-set semantics for
untimed systems. Subsequently, in Section 4, we present the transformation for
timed systems. Then, in Section 5, we present an approach for the transforma-
tion of programs in WAC model under power-set semantics into programs in
read/write model. Finally, we make concluding remarks in Section 7.



2 Atomicity Models, Semantics and System Assumptions
In this section, we first precisely specify the structure of the programs written in
read/write model and in WAC model. Then, we present the assumptions made
about the underlying system.

The programs are specified in terms of guarded commands; each guarded
command (respectively, action) is of the form:

guard — statement,

where guard is a predicate over program variables, and statement updates

program variables. An action ¢ —» st is enabled when g evaluates to true and
to execute that action, st is executed. A computation of this program consists of
a sequence So, $1, - . -, where s;41 is obtained from s; by executing actions (one
or more, depending upon the semantics being used) in the program.

A computation model limits the variables that an action can read and write.
Towards this end, we split the program actions into a set of processes. Each
action is associated with one of the processes in the program. We now describe
how we model the restrictions imposed by the read/write model and the WAC
model.

Read/Write model. In read/write model, a process consists of a set of public
variables and a set of private variables. In the read action, a process reads (one
or more) public variables of one of its neighbors. For simplicity, we assume that
each process j has only one public variable v.j that captures the values of all
variables that any neighbor of j can read.

Furthermore, in a read action, a process could read the public variables of its
neighbor and write a different value in its private variable. For example, consider
a case where each process has a variable x and j wants to compute the sum of the
x values of its neighbors. In this case, j could read the x values of its neighbors
in sequence. Whenever j reads x.k, it can update a private variable sum.j to be
sum.j + z.k. Once again, for simplicity, we assume that in the read action where
process j reads the state of k, j simply copies the public variables of k. In other
words, in the above case, we require j to copy the z values of all its neighbors
and then use them to compute the sum.

Based on the above discussion, we assume that each process j has one public
variable, v.j. It also maintains copy.j.k for each neighbor k of j; copy.j.k captures
the value of v.k when j read it last. Now, a read action by which process j reads
the state of k is represented as follows:

true — copy.j.k=v.k

And, the write action at j uses v.j and copy.j (i.e., copy variables for each
neighbor) and any other private variables that j maintains to update v.j. Thus,
the write action at j is as follows:

predicate(v.j, copy.j, other_private_variables.j)

— update v.j, other_private_variables.j;

WAC model. In the WAC model, each process consists of write actions (to
be precise, write-all actions). Each write action at j writes the state of j and
the state of its neighbors. Similar to the case in read/write model, we assume
that each process j has a variable v.j that captures all the variables that j can
potentially write to any of its neighbors. Likewise, process j maintains /.j.k for
each neighbor k; I.j.k denotes the value of v.k when k wrote it last. Thus, an
action in WAC model is as follows:
predicate(v.j, 1.5, other_private_variables.j)
— update v.j, other_private_variables.j;
Vk : k is a neighbor of j : l.k.j = v.5;



Remark. In the rest of the paper, we leave the additional private variables
considered above implicit.

Semantics. For the WAC model considered in this paper, there are different
types of semantics that can be used. Some of the commonly encountered seman-
tics include, interleaving (also known as central daemon), maximum-parallelism
and power-set semantics (also known as distributed daemon). In interleaving se-
mantics, given a set of enabled actions, i.e., actions whose execution will change
the state of some process, one of those actions is non-deterministically chosen for
execution. In maximum-parallelism, all enabled actions (one from each process)
are executed concurrently. And, in power-set semantics, any non-empty subset
of enabled actions (at most one from each process) is executed concurrently. In
this paper, unless stated otherwise, we assume that the program in WAC model
is executed under power-set semantics.

System assumptions. We assume that the set of processes in the system
are connected. If the set of processes are partitioned then the algorithms in this
paper can be executed for each partition. Further, we assume that in the given
program in read/write model, for any pair of neighbors j and %k, j can never
conclude that k£ does not need to read the state of k. In other words, we require
that the transformation should be correct even if each process executes infinitely
often. Further, in our transformation from read/write model to WAC model,
we assume that the topology remains fixed during the program execution, i.e.,
failure or repair of processes does not occur. Thus, while proving stabilization, we
disallow corruption of topology related information. This assumption is similar
to assumptions in previous stabilizing algorithms where the process IDs are
considered to be incorruptible. We note that our transformation from WAC
model to read/write model does not assume that the topology is known up front
and the topology can change at run time.

We consider two types of systems, timed and untimed. In a timed system,
each process has a clock variable. We assume that the rate of increase of clock is
same for all the processes. In an untimed (asynchronous) system, processes do
not have the notion of time or the speed of processes. In both these systems, we
assume that the execution of an action is instantaneous. The time is consumed
between successive actions. Additionally, in an untimed system, we assume that
the delay between successive actions is unpredictable.

3 Read/Write Model to WAC Model in Untimed Systems

In this section, we discuss the first of our transformations where we transform
a program in read/write model into a program in WAC model. In the WAC
model, there is no equivalent of a read action. Hence, an action by which process
Jj reads the state of k in the read/write model needs to be modeled in the WAC
model by requiring process k to write the appropriate value at process j. Of
course, when k writes the state of j in this manner, it is necessary that no other
neighbor of j is writing the state of j at the same time. Finally, a write action
in read/write model can be executed in WAC model as is.

To obtain the transformed program that is correct in WAC model, we orga-
nize the processes in the given program (in read/write model) in a ring. Such
a ring can be statically embedded in any arbitrary graph by first embedding a
spanning tree in it and then using an appropriate traversal mechanism to ensure
that each process appears at least once in the ring (cf. Figure 1).
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Fig. 1. In the transformed program, ‘A’ will execute actions of processes 0 and
6, ‘B’ will execute actions of processes 1, 3 and 5, and so on.

Let the processes in this ring be numbered 0...n—1; note that if a process
from the original graph is repeated in the ring then that process gets multi-
ple numbers in this ring. Now, in the transformed program, process 0 executes
first. When process 0 executes and writes the state of process 1 (and any other
processes that are neighbors of process 0 in the original communication graph),
process 1 is enabled and permitted to execute. When process 1 executes, it allows
process 2 to execute, and so on. Figure 2 shows the actions of process j in the
transformed program. If a process in the original graph has multiple numbers in
the ring, it executes the actions corresponding to all those values.

process j
const n; // number of processes in the ring
var v.j, 1., counter.j;
initially
set v.j according to the initial value of v.j in read/write model;
set l.j according to the initial value of copy.j in read/write model;
counter.j = 0;
begin
counter.j=j — if(predicate(v.j,1.5)) update v.7;
counter.j=(j + 1) mod n;
Vk : k is a neighbor of j : l.k.j, counter.k = v.j, (j + 1)mod n;
// this write action will enable process numbered j + 1

Fig. 2. Read/write model to WAC model

end

Theorem 3.1 For every computation of the transformed program in WAC
model under power-set semantics there is an equivalent computation of the given
program in read/write model.

For reasons of space, we refer the reader to [12] for the proofs of all the
theorems in this paper. O

Optimality issues. Now, we discuss the optimality of the transformation
algorithm presented in Figure 2. Towards this end, we first identify the notion
of redundant writes. Based on the definition of WAC model, the guard of any
action, say of process 7, in WAC model depends only on the local variables of j.
Now, consider the case where process j executes its action (and writes its state
as well as the state of its neighbors). If an action of j is still enabled after this
execution, it follows that j can again execute and write the state of its neighbors.
In this scenario, one of the writes of j is redundant if the system was untimed and
no collision had occurred. To show the optimality of the above transformation,
we assume that processes do not perform such redundant writes.

Redundant writes. We say that process j does not perform redundant writes
if after the execution of any action by j, all actions of j are disabled until a
neighbor of j executes and writes the state of j.



Theorem 3.2 In an untimed system where processes cannot detect collisions,
any algorithm that (1) transforms a given program in read/write model into an
equivalent program in WAC model under power-set semantics, and (2) ensures
that the processes in the generated program in WAC model are deterministic
and do not perform redundant writes, must produce programs in WAC model
in which at most one process executes at a time. O

There are several ways to improve the performance of the transformation if
we weaken some of the assumptions made above. Specifically, we can remove the
assumption that processes cannot perform redundant writes in order to allow
concurrency in the programs in WAC model. In [12], we present a solution that
provides potential concurrency if processes are allowed to perform redundant
writes. Another approach would be to remove the assumption about untimed
systems. If the processes are allowed to use time, we can design transformation
algorithms that allow more concurrency. In Section 4, we present such algo-
rithms.

Stabilization issues. Now, under the assumptions stated in the above theo-
rem, we show that the transformation shown in Figure 2 cannot be stabilization
preserving. Based on the assumption that processes do not perform redundant
writes, for each process, say j, there exists a local state of that process where
none of its actions are enabled. Also, since the guard of an action at process j
depends only on local variables of j, we can perturb the given program to states
where none of the actions are enabled. It follows that it will not be possible for
the program to reach legitimate states from such a state.

In the context of the above result, a reader may wonder if a stabilizing token
ring circulation algorithm (e.g., [11]) could be used to achieve stabilization in
the transformation shown in Figure 2. To add stabilization to the program in
Figure 2, we need a stabilizing token ring circulation algorithm that is correct
under the WAC model. By contrast, existing stabilizing token ring circulation
algorithms are correct under read/write model.

The above impossibility result depends on the assumption that the system
is untimed and processes are deterministic, cannot detect collisions, and cannot
perform redundant writes. If the assumption about untimed system is removed
then it is possible to preserve stabilizing fault-tolerance. We present such stabi-
lization preserving algorithms in Section 4.

4 Read/Write Model to WAC Model in Timed Systems

In this section, we present an algorithm for the transformation of a program in
read/write model into a program in WAC model for timed systems. Specifically,
we present a transformation for an arbitrary topology using graph coloring. Also,
this transformation can be achieved using a collision-free time-slot based protocol
like time-division multiple access (TDMA) [9,13]. In these transformations, we
initially assume that the clocks of the processes are initialized to 0 and the rate
of increase of the clocks is same for all processes. Subsequently, we also present
an approach to deal with uninitialized clocks; this approach enables us to ensure
that if the given program in read/write model is stabilizing fault-tolerant then
the transformed program in WAC model is also stabilizing fault-tolerant.

Transformation algorithm. The main idea behind this algorithm is graph
coloring. Let the communication graph in the given program in read/write
model be G = (V, E). We transform this graph into G' = (V, E') such that
E'={(z,9)|(z # 1) A (z,9) € BV (32 :: (z,2) € EA(2y) € E)) (cf. Figure



3). In other words, two distinct vertices z and y are connected in G' if distance
between z and y in G is at most 2. Let f : V — [0... K —1] be the color assign-
ments such that (Vj, k : k is a neighbor of j in G' : f(j) # f(k)), where K is any
number that is sufficient for coloring G'.

VA VAN
Fig. 3. Transformation using graph coloring. The number associated with each
process denotes the color of the process.

Let f.7 denote the color of process j. Now, process j can execute at clock.j =
f-7. Moreover, process j can execute at time slots Ve: ¢ > 0: f.7 + c* K. When
j executes, it writes its own state and the state of its neighbors in G. Based on
the color assignment, it follows that two write actions do not collide. Figure 4
shows the actions of process j.

process j
const f.j, K;
var v.7, l.J, clock.j;
initially
set v.j according to the initial value of v.j in read/write model;
set 1.j according to the initial value of copy.j in read/write model;
clock.j=0;
begin
(Fe: clock.j=f.j + c* K) — if(predicate(v.j,1.5)) update v.j;
Vk : k is a neighbor of j in the original graph :
lk.j=v.j;
end Fig. 4. Transformation for arbitrary topology

Theorem 4.1 For every computation of the transformed program in WAC
model under power-set semantics there is an equivalent computation of the given

program in read/write model. O
Theorem 4.2 If the maximum degree of G is d, then the period between
successive executions of a process is at most d2 + 1. O

Remark. The above theorem presents the upper bound on the performance
of the transformation. For sensor networks (e.g., [14,15]), maximum degree d is
usually small. Hence, the period between successive executions of a process is
small. Moreover, d? + 1 is the upper bound for the period and the period can be
smaller than d? + 1. For example, for a grid topology, maximum degree, d =4,
and period=K =5.

Preserving stabilization during transformation. To show that stabiliza-
tion is preserved during transformation, we first present how we deal with the
case where the clocks are not initialized or clocks of processes are corrupted.
Note that the rate of increase of the clocks is still the same for all processes.
To recover from uninitialized clocks, we proceed as follows: Initially, we con-
struct a spanning tree of processes. Let p.j denote the parent of process j in
this spanning tree. Process j is initialized with a constant c.j which captures the
difference between the initial slot assignment of j and p.j.

If clocks are not synchronized, the action by which p.j writes the state of j
may collide with other write actions in the system. Process j uses the absence of



this write to stop and wait for synchronizing its clock. Process j waits for K xn
slots, where K is the period between successive slots and n is the number of
processes in the system. This ensures that process j starts executing only when
all its descendants have stopped in order to synchronize their clocks. When j
later observes the write action performed by p.j, it can use c¢.j to determine
the next slot in which it should execute. Since the root process continues to
execute in the slots assigned to it, eventually, its children will synchronize with
the root. Subsequently, the grandchildren of the root will synchronize, and so
on. Continuing thus, the clocks of all processes will be synchronized and hence,
further computation will be collision-free.

In the absence of topology changes, the spanning tree constructed above and
the values of f.j and c.j are constants. Hence, for a fixed topology, we assume
that these values are not corrupted. Once the clocks are synchronized, from
Theorem 4.1, for the subsequent computation of the transformed program, there
is an equivalent computation of the given program in read/write model. Also,
if the given program is stabilizing fault-tolerant then every computation of that
program reaches legitimate states. Combining these two results, it follows that
every computation of the transformed program eventually reaches legitimate
states. Thus, we have
Theorem 4.3 If the given program in read/write model is stabilizing fault-
tolerant then transformed program (with the modifications discussed above) in
WAC model is also stabilizing fault-tolerant. O
Remark. The above modification is meant to illustrate the feasibility of pre-
serving stabilization while transforming a program in read/write model into a
program in WAC model. The time for which a process waits, K % n slots, after
failing to observe the write action of its parent is an overestimate. The optimal
time for which a process should wait is outside the scope of the paper.

5 WAC Model to Read/Write Model

In this section, we focus on the transformation of a program that is correct in
the WAC model under power-set semantics into a program in read /write model.
During this transformation, an action by which j writes its own state and the
state of its neighbors in WAC model is split so that j writes its own state and
then allows each of its neighbors to read its state.

However, if multiple fragmented WAC actions are executed simultaneously
in the read/write model, their execution may not correspond to the sequential
(respectively, parallel) execution of those actions in the WAC model. For exam-
ple, consider the execution of two actions, a.j and a.k, at neighboring processes
j and k in the WAC model. In a fragmented execution of these two actions, the
following execution scenario is feasible: j writes its own state as prescribed by
action a.j, k writes its own state as prescribed by a.k, j reads the state of k, and
k reads the state of j. However, such a scenario is not possible in WAC model.
Specifically, if a.j and a.k are executed simultaneously then, due to collision, j
(respectively, k) will not be able to write the state of k (respectively, 7). And,
in a sequential execution where a.k is executed after a.j, k will be aware of the
new state of j and use that in the execution of a.k. By contrast, in the above
fragmented execution, this property was not true. Thus, the fragmented execu-
tion of two actions in the WAC model may not correspond to their sequential
or parallel execution. Hence, to transform the given program in WAC model,
we ensure that two neighboring processes do not simultaneously execute their
fragmented WAC actions.



The problem of ensuring that neighboring processes do not execute simulta-
neously is a well-known problem in distributed computing. It has been studied in
the context of local mutual exclusion (e.g., [4]), dining philosophers (e.g., [3,16])
and drinking philosophers (e.g., [3,16]). Since either of these solutions suffices
for our purpose, we simply describe the features of these solutions that are of
importance here.

Each of the solutions in [3,4,16] has the following two actions: enterCS and
exitCS. These solutions further guarantee that when a process is in its critical
section (i.e., it has executed enterCS but not exitCS) none of its neighbors are
in its critical section. Using these two actions, in Figure 5, we demonstrate how
one can transform a program in WAC model into a program in read/write model.
Note that the last action in Figure 5 appears to allow j to read the state of all
its neighbors; this action can be slowly executed so that j reads the counters of
its neighbors one at a time.

process j
var wv.j, copy.j, counter.j;
initially
set v.j according to the initial value of v.7 in WAC model;
set copy.j according to the initial value of I.j in WAC model;
Vk :: counter.j.k=0;
begin
upon executing enterCS —  counter.j.j := counter.j.j + 1;
execute ‘write part’ of the program
in WAC model to update v.7;
counter.j.k < counter.k.k —  counter.j.k, copy.j.k := counter.k.k,v.k;
(Vk : counter.k.j > counter.j.j) — execute exitCS;
request for CS again;
end Fig. 5. WAC model to read/write model

Remark. For reasons of space, we refer the reader to [17], for an approach to
bound counter.j in the transformation shown in Figure 5.

Theorem 5.1 For every computation of the transformed program in read /write
model there is an equivalent computation of the given program in WAC model
under power-set semantics. O

Preserving stabilization during transformation. Now, we show that if
we use a local mutual exclusion algorithm that is stabilizing (e.g., [3,4]) then
the transformation shown in Figure 5 is stabilization preserving. To show this,
we first observe that any stabilizing solution for local mutual exclusion must
ensure that eventually some process enters its critical section. Consider the case
where process j is in critical section. If there exists a neighbor, say k, of j such
that counter.k.j < counter.j.j then k will copy counter.j.j. Thus, eventually,
7 will be able to exit critical section. Based on the above discussion, it follows
that the stabilization property of local mutual exclusion is preserved. Hence,
the program will recover to states from where no two neighboring processes are
in their critical sections. Once every process enters CS sufficiently many times
(equal to the maximum counter value in the initial state), the counter values
will be restored, i.e., Vj, k : counter.k.j < counter.j.j will be true. Once counter
values are restored, based on Theorem 5.1, for the subsequent computation of the
transformed program in read/write model there is an equivalent computation of
the given program in WAC model. Thus, we have



Theorem 5.2 If the given program in WAC model is stabilizing fault-tolerant
then the transformed program in read/write model is also stabilizing fault-
tolerant. O

6 Discussion

Our transformations from (respectively, to) WAC model to (respectively, from)
read/write model raises several questions. We discuss some of these questions
and their answers, next.

In this paper, we considered transformations of programs in read/write model
to WAC model, and vice versa. Are similar transformations possible for other
models considered in the literature?

Yes. It is possible to transform a program in shared memory model (where,
in an atomic step, a process can read its local state as well as the state of
its neighbors and write its own state) or message passing model (where, in an
atomic step, a process can either send a message, receive a message, or perform an
internal computation) to WAC model, and vice versa. Given a program in shared
memory model, first, we can transform it to obtain a corresponding program in
read/write model (e.g., [3,4]). Then, we can use the algorithms in Sections 3
or 4 to transform it into a program that is correct under the WAC model.
Moreover, given a program in WAC model, we can use the algorithm in Section
5 to transform it into an algorithm that is correct in read/write model. By
definition, it is correct under shared memory model.

Regarding transformation from WAC model to message passing model, we
can first use our algorithm from Section 5. Then, we can use the approach in [3] to
transform it to a program in message passing model. Likewise, given a program
in message passing model, we can first obtain a program in read/write model
and then transform it into a program in WAC model.

How efficient are these transformations?

First, we compute the efficiency of the transformation from read /write model
to WAC model. For untimed systems, according to Theorem 3.2, at most one
process can execute at a time, if processes are deterministic, cannot detect col-
lisions, and cannot perform redundant writes. Hence, the one enabled process
may take up to O(N) time before it can execute next, where N is the number
of processes in the system. Thus, in untimed systems, the transformation from
read/write model to WAC model can slow down the algorithm in WAC model.
However, for this model this delay is inevitable (cf. Theorem 3.2). For timed sys-
tems, a process executes once in K slots where K is the number of colors used
to color the extended communication graph. Thus, in timed systems, the trans-
formation can slow down the given algorithm by a factor of K that is bounded
by d?, where d is the maximum degree of any node in the graph. This slow down
is reasonable in sensor networks where topology is typically geometric and value
of K is small (e.g., K =5 for grid-based topology).

Likewise, in the transformation from WAC model to read/write model, the
local mutual exclusion algorithm prevents two neighboring processes from exe-
cuting concurrently. The slow down caused by this is O(d) where d is the maxi-
mum degree in the given communication graph.

Are the transformations discussed in this paper possible if the processes can detect
collisions?

Yes. The transformations proposed in Sections 3 and 4 are correct even if the
processes can detect collisions. However, the optimality of the transformation



for untimed systems may not hold. Specifically, in Theorem 3.2, we assume that
a process can go from being disabled to being enabled only if its neighbor writes
its state. In an algorithm where collision detection is possible, a process can also
go from being disabled to being enabled when it detects a collision.

7 Conclusion and Future Work

In this paper, we considered a novel model of computation, write all with colli-
sion (WAC), and compared it with existing models of computation. The WAC
model captures the computation in sensor networks where in an atomic step, a
sensor can write its state and the state of its neighbors. However, if two sensors
try to write the state of a sensor then none of the writes occur due to collision.
Although, our transformation algorithms are designed for the case where col-
lisions are undetectable, as discussed in Section 6, they can be easily used in
contexts where collisions are detectable.

We compared the WAC model of computation with other models consid-
ered in the literature. We showed that it is possible to transform a program in
read/write model into a program in WAC model, and vice versa. However, while
transforming a program in read/write model into a program in WAC model, if
the transformed program is deterministic and cannot use time then the trans-
formed program is considerably slow; at most one process can execute at a time.
We showed that this is optimal for an untimed, deterministic system where pro-
cesses cannot detect collisions and cannot perform redundant writes (cf. Theorem
3.2). Also, we showed that, in a timed model, it is possible to allow processes
to execute concurrently (cf. Section 4). Thus, we find that if the processes do
not have the ability to read then the ability to determine time consistently is
important.

For timed model, if the topology is fixed, our transformation preserves the
stabilization property of the given program in read/write model. Further, the
transformation of programs in WAC model to read /write model is also stabiliza-
tion preserving. This transformation does not assume a fixed topology.

There are several open problems raised by our work. One of these problems
is to develop fault-tolerance preserving transformations for WAC model. Since
our algorithms require some offline setup (e.g., graph coloring), they cannot deal
with topology changes. Based on the results in Section 3, we expect that such
transformations would not be possible in untimed, deterministic systems. How-
ever, we expect that such transformations could be obtained for timed systems.
One of the interesting extension to this work is to design primitives that would
allow us to identify transformations where concurrent executions are possible. In
this paper, we identified two such primitives, time and redundant writes. Another
interesting extension of this work is to develop programs in WAC model that
permit concurrent execution for untimed systems using the knowledge about the
speed of processes. Another extension of this work is to design transformations
for timed systems that allow clock drifts among processes.
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